激光与光电子学进展, 2017, 54 (6): 062201, 网络出版: 2017-06-08   

基于6次反射环形孔径透镜的微光学标签系统

Micro-Optics Label System Based on Six-Reflection Fold Annular Aperture Lens
作者单位
南京邮电大学光电工程学院, 江苏 南京 210003
摘要
介绍了一种微光学标签系统,结合理论分析提出用大孔径长焦距的透镜作为接收端可以提升系统的成像性能。利用Zemax光学软件设计出一种大孔径长焦距的6次反射环形孔径超薄透镜,该透镜前表面为平面反射镜,后表面为4个同轴环形非球面反射镜,外直径为28 mm,有效焦距为38 mm,镜头厚度为5 mm。在保证与4次反射透镜通光孔径一致的条件下,通过改进透镜结构增加了反射次数,减小了厚度,扩展了焦距。对基于环形孔径超薄透镜为接收端的微光学标签系统进行了整体优化分析,并给出了模拟成像图的对比,结果发现使用6次反射透镜做接收端可以增加系统的接收距离,减小接收图像的畸变。最后利用同态滤波的处理方法,有效地校正了亮度不均匀的接收图像。
Abstract
A special micro-optics label system is introduced. A large aperture and long focal length lens structure, which is used as the system receiving terminal, is demonstrated to be able to improve the imaging performance significantly by theoretical analysis. A six-reflection fold annular aperture ultra-thin lens with large aperture and long focal length is designed with the aid of optical engineering software Zemax. The front surface is a plane mirror and the rear surface consists of four concentric annular aspheric reflectors. The outer diameter of the lens is 28 mm, the effective focal length is 38 mm, and the thickness of the lens is 5 mm. With the clear aperture consistency of a four-reflection fold annular aperture lens, the structure of the equipment is improved to increase the number of reflections, effectively reduce the thickness of the lens, and enlarge the focal length of lens. In this work, an optimized design and analysis to the micro-optics label system are reported. It is based on the annular aperture ultra-thin lens as receiving terminal. And the comparison of simulation imaging is given. The results show that using six-reflection fold annular aperture lens as receiving terminal can increase the receiving distance and reduce the distortion of simulated images. Finally, a received image with non-uniform brightness is effectively corrected by using homomorphic filtering method.
参考文献

[1] 张成海, 张 铎. 现代自动识别技术与应用[M]. 北京: 清华大学出版社, 2003: 9.

    Zhang Chenghai, Zhang Duo. Modern automatic identification technology and application[M]. Beijing: Tsinghua University Press, 2003: 9.

[2] 张起贵, 郑永杰, 贺 智. 条形码技术及应用[J]. 电子工艺技术, 1996(3): 26-29.

    Zhang Qigui, Zheng Yongjie, He Zhi. Bar code technology and application[J]. Electronic Technology, 1996(3): 26-29.

[3] 沈宇超, 沈树群. 射频识别技术及其发展现状[J]. 电子技术应用, 1999, 25(1): 4-5.

    Shen Yuchao, Shen Shuqun. Radio frequency identification technology and its development[J]. Application of Electronic Technology, 1999, 25(1): 4-5.

[4] 刘 浩. 基于NFC技术的近场通信应用探索[J]. 中国无线电, 2010(12): 1-2.

    Liu Hao. Application of near field communication based on NFC technology[J]. China Radio, 2010(12): 1-2.

[5] Mohan A, Woo G, Hiura S, et al. Bokode: imperceptible visual tags for camera based interaction from a distance[C]. ACM Transactions on Graphics (TOG), 2009, 28(3): 98.

[6] 林 武, 梁忠诚, 张 浩. 有源加密型微光学标签系统的设计[J]. 物联网技术, 2012, 2(3): 25-28.

    Lin Wu, Liang Zhongcheng, Zhang Hao. Design of micro-optical label system of active encryption[J]. Internet of Things Technologies, 2012, 2(3): 25-28.

[7] 张 浩, 梁忠诚, 林 武. 无源微型可视化光学标签系统的设计[J]. 物联网技术, 2012, 2(4): 22-24.

    Zhang Hao, Liang Zhongcheng, Lin Wu. The design of micro visual optical tag system by passive light source[J]. Internet of Things Technologies, 2012, 2(4): 22-24.

[8] 李志鹏, 梁忠诚. 集成化微光学标签系统的设计与制作[J]. 光电技术应用, 2013, 28(2): 5-8.

    Li Zhipeng, Liang Zhongcheng. Design and production of integrated micro-optics tag system[J]. Electro-Optic Technology Application, 2012, 28(2): 5-8.

[9] Tremblay E J, Stack R A, Morrison R L, et al. Ultrathin cameras using annular folded optics[J]. Applied Optics, 2007, 46(4): 463-471.

[10] 戈 兰, 梁忠诚. 基于环型孔径超薄透镜的微光学标签接收系统[J]. 光学学报, 2015, 35(12): 1222001.

    Ge Lan, Liang Zhongcheng. Micro-optics label receiving system based on annular aperture ultra-thin lens[J]. Acta Optica Sinica, 2015, 35(12): 1222001.

[11] Geary J M. Introduction to lens design: with practical ZEMAX examples[M]. Richmond: Willmann-Bell, 2002.

[12] 王 朋, 杜 雪, 回长顺. 金刚石车削表面微纳织构的气囊抛光改进[J]. 光学学报, 2015, 35(3): 0322001.

    Wang Peng, Du Xue, Hui Changshun. Polishing diamond turning surface micro texture improvement[J]. Acta Optica Sinica, 2015, 35(3): 0322001.

[13] 高铎瑞, 胡 辉, 汪 伟, 等. 一种改进的易于加工、装调的离轴三反光学系统设计[J]. 中国激光, 2015, 42(6): 616001.

    Gao Duorui, Hu Hui, Wang Wei, et al. A novel and easy processing, design of off-axis three mirror optical system alignment[J]. Chinese J Lasers, 2015, 42(6): 616001.

[14] 潘君骅. 光学非球面的设计、加工与检验[M]. 北京: 科学出版社, 1994: 6-20.

    Pan Junhua. The design, manufacture and test of the aspherical optical surfaces[M]. Beijin: Science Press, 1994: 6-20.

[15] Haney M W. Performance scaling in flat imagers[J]. Applied Optics, 2006, 45(13): 2901-2910.

[16] 刘佳男, 张秋菊. 基于OpenCV 的图像灰度校正算法的实现[J]. 江南大学学报(自然科学版), 2011, 10(6): 662-666.

    Liu Jia′nan, Zhang Qiuju. Implementation of image gray level correction algorithm based on OpenCV[J]. Journal of Jiangnan University (Natural Science Edition), 2011, 10(6): 662-666.

[17] 梁传晖, 王玉丹, 杜国浩, 等. 同步辐射X射线图像对比度增强算法研究[J]. 光学学报, 2015, 35(3): 0310003.

    Liang Chuanhui, Wang Yudan, Du Guohao, et al. Study on contrast enhancement algorithm for X-ray images of synchrotron radiation[J]. Acta Optica Sinica, 2015, 35(3): 0310003.

[18] 张成义. 基于Matlab的同态滤波器的优化设计[J]. 应用光学, 2010, 31(4): 584-588.

    Zhang Chengyi. Optimal design of homomorphic filter based on Matlab[J]. Applied Optics, 2010, 31(4): 584-588.

[19] Sujatha C M, Navinkumar K, Arunlal K S, et al. Performance evaluation of homomorphic filtering, anisotrophic filtering and autocontrast algorithm[C]. Advances in Computing, Control & Telecommunication Technologies, 2009: 27-29.

陈伟, 梁忠诚, 戈兰, 孔梅梅. 基于6次反射环形孔径透镜的微光学标签系统[J]. 激光与光电子学进展, 2017, 54(6): 062201. Chen Wei, Liang Zhongcheng, Ge Lan, Kong Meimei. Micro-Optics Label System Based on Six-Reflection Fold Annular Aperture Lens[J]. Laser & Optoelectronics Progress, 2017, 54(6): 062201.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!