光学学报, 2017, 37 (1): 0123001, 网络出版: 2017-01-13   

基于单层二硫化钼纳米机械振子的全光学质量传感

All-Optical Mass Sensing Based on Monolayer Molybdenum Disulfide Nanomechanical Oscillator
作者单位
安徽理工大学力学与光电物理学院, 安徽 淮南 232001
摘要
提出了一种基于硅/二氧化硅基底的平板状圆形单层二硫化钼纳米机械振子系统。通过将一束较强的抽运激光和一束较弱的探测激光同时作用于该振子系统, 实现了一种测量机械振子频率的全光学方法, 证明了系统中存在声子诱导透明现象, 并给出其物理解释。通过测量探测吸收谱中两尖峰之间的分裂宽度, 发现激子和振子的耦合强度与线宽呈正比关系, 该方法可用来测量激子和振子的耦合强度。基于该纳米机械振子系统, 提出了一种全光学质量传感方案。通过测量光谱中的共振频移, 可直接得到沉积在二硫化钼振子表面的额外质量。数值结果显示,该振子系统的质量响应率为2.32 Hz/ag。单层二硫化钼纳米机械振子系统将在量子传感和基于二硫化钼的全光学器件中得到广泛应用。
Abstract
A plate-like circular monolayer molybdenum disulfide (MoS2) nanomechanical oscillator system based on Si/SiO2 substrate is proposed. An all-optical method, which uses a strong pump laser and a weak detection laser effect on the oscillator system at the same time, is proposed to measure mechanical oscillator frequency. The phenomenon of phonon-induced transparency is demonstrated in the system, and the physical interpretation is presented. By measuring the width between two peaks in the probe absorption spectrum, we find that the exciton-oscillator coupling strength is proportional to the width and the method can be used to measure the exciton-oscillator coupling strength. Further, an all-optical mass sensing scheme is proposed based on the nanomechanical oscillator system. By measuring the resonance frequency shift in optical spectrum, we can obtain the additional mass deposited on the surface of molybdenum disulfide oscillator directly. The simulation results show that the mass responsivity of the oscillator system is 2.32 Hz/ag. The monolayer molybdenum disulfide nanomechanical oscillator system may have potential applications in quantum sensing and all-optical MoS2-based devices.
参考文献

[1] Geim A K. Graphene: Status and prospects[J]. Science, 2009, 324(5934): 1530-1534.

[2] Castro Neto A H, Guinea F, Peres N M R, et al. The electronic properties of graphene[J]. Reviews of Modern Physics, 2009, 81(1): 109-162.

[3] Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer grapheme[J]. Science, 2008, 321(5887): 385-388.

[4] Eichler A, Moser J, Chaste J, et al. Nonlinear damping in mechanical resonators made from carbon nanotubes and grapheme[J]. Nature Nanotechnology, 2011, 6(6): 339-342.

[5] Wehling T O, Novoselov K S, Morozov S V, et al. Molecular doping of grapheme[J]. Nano Letters, 2008, 8(1): 173-177.

[6] Chen C, Rosenblatt S, Bolotin K I, et al. Performance of monolayer graphene nanomechanical resonators with electrical readout[J]. Nature Nanotechnology, 2009, 4(12): 861-867.

[7] Buscema M, Barkelid M, Zwiller V, et al. Large and tunable photothermoelectric effect in single-layer MoS2[J]. Nano Letters, 2013, 13(2): 358-363.

[8] Novoselov K S, Fal V I, Colombo L, et al. A roadmap for grapheme[J]. Nature, 2012, 490(7419): 192-200.

[9] Li X, Zhang F, Niu Q. Unconventional quantum Hall effect and tunable spin Hall effect in Dirac materials: Application to an isolated MoS2 trilayer[J]. Physical Review Letters, 2013, 110(6): 066803.

[10] Song Y, Dery H. Transport theory of monolayer transition-metal dichalcogenides through symmetry[J]. Physical Review Letters, 2013, 111(2): 026601.

[11] He K, Poole C, Mak K F, et al. Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2[J]. Nano Letters, 2013, 13(6): 2931-2936.

[12] Mak K F, Lee C, Hone J, et al. Atomically thin MoS2: A new direct-gap semiconductor[J]. Physical Review Letters, 2010, 105(13): 136805.

[13] Lee H S, Min S W, Chang Y G, et al. MoS2 nanosheet phototransistors with thickness-modulated optical energy gap[J]. Nano Letters, 2012, 12(7): 3695-3700.

[14] Lopez-Sanchez O, Lembke D, Kayci M, et al. Ultrasensitive photodetectors based on monolayer MoS2[J]. Nature Nanotechnology, 2013, 8(7): 497-501.

[15] Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors[J]. Nature Nanotechnology, 2011, 6(3): 147-150.

[16] Qiu H, Pan L, Yao Z, et al. Electrical characterization of back-gated bi-layer MoS2 field-effect transistors and the effect of ambient on their performances[J]. Applied Physics Letters, 2012, 100(12): 123104.

[17] 钟文学, 王一平, 程广玲. 量子点系统中纳米机械振子诱导的光开关[J]. 光学学报, 2015, 35(8): 0827001.

    Zhong Wenxue, Wang Yiping, Cheng Guangling. Nanomechanical-resonator-assisted induced optical switching in quantum dot system[J]. Acta Optica Sinica, 2015, 35(8): 0827001.

[18] 廖庆洪, 郑庆华, 鄢秋荣, 等. 原子-腔光力学系统中原子熵压缩的研究[J]. 中国激光, 2016, 43(2): 0218001.

    Liao Qinghong, Zheng Qinghua, Yan Qiurong, et al. Study on entropy squeezing of the atom in an atom-cavity-optomechanical system[J]. Chinese J Lasers, 2016, 43(2): 0218001.

[19] Fontana M, Deppe T, Boyd A K, et al. Electron-hole transport and photovoltaic effect in gated MoS2 Schottky junctions[J]. Sci Rep, 2013, 3: 1634-1639.

[20] Lee J, Wang Z, He K, et al. High frequency MoS2 nanomechanical resonators[J]. ACS Nano, 2013, 7(7): 6086-6091.

[21] Bertolazzi S, Brivio J, Kis A. Stretching and breaking of ultrathin MoS2[J]. ACS Nano, 2011, 5(12): 9703-9709.

[22] Castellanos-Gomez A, Poot M, Steele G A, et al. Elastic properties of freely suspended MoS2 nanosheets[J]. Advanced Materials, 2012, 24(6): 772-775.

[23] Castellanos-Gomez A, van Leeuwen R, Buscema M, et al. Single-layer MoS2 mechanical resonators[J]. Advanced Materials, 2013, 25(46): 6719-6723.

[24] Perkins F K, Friedman A L, Cobas E, et al. Chemical vapor sensing with monolayer MoS2[J]. Nano Letters, 2013, 13(2): 668-673.

[25] Late D J, Huang Y K, Liu B, et al. Sensing behavior of atomically thin-layered MoS2 transistors[J]. ACS Nano, 2013, 7(6): 4879-4891.

[26] Lee C, Yan H, Brus L E, et al. Anomalous lattice vibrations of single-and few-layer MoS2[J]. ACS Nano, 2010, 4(5): 2695-2700.

[27] Kioseoglou G, Hanbicki A T, Currie M, et al. Valley polarization and intervalley scattering in monolayer MoS2[J]. Applied Physics Letters, 2012, 101(22): 221907.

[28] Molina-Sanchez A, Wirtz L. Phonons in single-layer and few-layer MoS2 and WS2[J]. Physical Review B, 2011, 84(15): 155413.

[29] Li T. Ideal strength and phonon instability in single-layer MoS2[J]. Physical Review B, 2012, 85(23): 235407.

[30] Wang Z, Lee J, He K, et al. Embracing structural nonidealities and asymmetries in two-dimensional nanomechanical resonators[J]. Sci Rep, 2014, 4: 3919-3925.

[31] Suzuki H, Yamaguchi N, Izumi H. Theoretical and experimental studies on the resonance frequencies of a stretched circular plate: Application to Japanese drum diaphragms[J]. Acoustical Science and Technology, 2009, 30(5): 348-354.

[32] Mahan G D. Many-particle physics[M]3rd ed. New York: Plenum, 1981.

[33] Chen H J, Zhu K D. Coherent optical responses and their application in biomolecule mass sensing based on a monolayer MoS2 nanoresonator[J]. J Opt Soc Am B, 2014, 31(7): 1684-1690.

[34] Weis S, Rivière R, Deléglise S, et al. Optomechanically induced transparency[J]. Science, 2010, 330(6010): 1520-1523.

[35] Okamoto H, Gourgout A, Chang C Y, et al. Coherent phonon manipulation in coupled mechanical resonators[J]. Nature Physics, 2013, 9(8): 480-484.

[36] Yan H, Low T, Guinea F, et al. Tunable phonon-induced transparency in bilayer graphene nanoribbons[J]. Nano Letters, 2014, 14(8): 4581-4586.

[37] Li J J, Zhu K D. All-optical mass sensing with coupled mechanical resonator systems[J]. Physics Reports, 2013, 525(3): 223-254.

[38] Ge Y, Liu A Y. Phonon-mediated superconductivity in electron-doped single-layer MoS2: A first-principles prediction[J]. Physical Review B, 2013, 87(24): 241408.

[39] Yang Y T, Callegari C, Feng X L, et al. Zeptogram-scale nanomechanical mass sensing[J]. Nano Letters, 2006, 6(4): 583-586.

[40] Naik A K, Hanay M S, Hiebert W K, et al. Towards single-molecule nanomechanical mass spectrometry[J]. Nature Nanotechnology, 2009, 4(7): 445-450.

[41] Yie Z, Zielke M A, Burgner C B, et al. Comparison of parametric and linear mass detection in the presence of detection noise[J]. Journal of Micromechanics and Microengineering, 2011, 21(2): 025027.

[42] Turner K L, Burgner C, Yie Z, et al. Nonlinear dynamics of MEMS systems[J]. AIP Publishing, 2011, 1339(1): 111-113.

陈华俊, 李洋, 陈昌兆, 方贤文, 唐旭东. 基于单层二硫化钼纳米机械振子的全光学质量传感[J]. 光学学报, 2017, 37(1): 0123001. Chen Huajun, Li Yang, Chen Changzhao, Fang Xianwen, Tang Xudong. All-Optical Mass Sensing Based on Monolayer Molybdenum Disulfide Nanomechanical Oscillator[J]. Acta Optica Sinica, 2017, 37(1): 0123001.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!