光子学报, 2014, 43 (11): 1122001, 网络出版: 2014-12-08   

视场拼接复眼成像系统结构及装调方法

Structure and Alignment of Field Stitching Compound Eye Optical Imaging System
作者单位
长春理工大学 光电工程学院, 长春 130022
摘要
提出了以高分辨率、小视场的子眼镜头为中心, 曲面阵列化排布多个分辨率较低、视场大的边缘阵列子眼镜头的人工仿生复眼的结构形式.基于物方视场空间应该保证无缝拼接并尽量缩小重合区域的原则, 分析并得到子眼镜头在X方向和Y方向上视场角与复眼系统总体视场角的数学关系式,推导出了边缘阵列子眼镜头的周期阵列数n的数学模型, 确定了子眼镜头在曲面上的阵列排布方式.依据曲面阵列排布形式设计了子眼镜头曲面固定本体, 提出了利用自带光源的自准直经纬仪及计算机图像处理技术的装调方法.在实际装配和调整过程中, 完成了中心子眼镜头和边缘第一阵列子眼镜头的安装, 利用该系统采集图像数据, 结果表明: 物方视场空间的实际重合区域与理论设计一致.
Abstract
A structure of artificial compound eye was put forward which was centered on high-resolution and small field of view sub-eye lens and has many large FOV and low-resolution sub-eye lens on the curved surface by array configuration. Based on the principle that object field should be seamless stitching and reduce overlap regions, the mathematical relationship between the field angles of sub-eye lens in the X direction and Y direction and the one of the whole compound eye system was analyzed, the mathematical model about the period of marginal array sub-eye lens was deduced. And then, the arrangement criterion of the sub-eye lens array on curved surface was confirmed. The spherical surface part was designed by the arrangement criterion, an alignment method with using of the auto-collimating theodolite and the digital picture processing technique was proposed. The central sub-eye lens and marginal first array sub-eye lens was assembled in the course of adjustment. The results of image data acquisition show that overlap regions of objective field are the same as the theory design, which confirms the arrangement of sub-eye lens is reasonable and the alignment is feasible.
参考文献

[1] 张红鑫, 卢振武, 李凤有, 等.重叠复眼光学模型的建立与分析[J]. 光子学报,2007,36(6): 1106-1109.

    ZHANG Hong-xin, LU Zhen-wu, LI Feng-you, et al. The building and analysis of overlap compound eye optical formulation[J]. Acta Photonica Sinaca, 2007, 36(6): 1106-1109.

[2] 张红鑫, 卢振武, 王瑞庭, 等. 曲面复眼成像系统的研究[J]. 光学精密工程, 2006, 14(3): 346-350.

    ZHANG Hong-xin, LU Zhen-wu, WANG Rui-ting, et al. Study on curved compound eye imaging system[J]. Optics and Precision Engineering, 2006, 14(3): 346-350.

[3] FLORES A, WANG M R, YANG J. Achromatic hybrid refractive-diffractive lens with extended depth of focus[J]. Applied Optics, 2004, 43(30): 5618-5630.

[4] 贺莉清, 吴海生. 大视场折/衍混合系统光学设计[J].激光杂志, 1999, 20(5): 15-16.

    HE Li-qing, WU Hai-sheng. Optical design of hybrid reflective/ diffractive system in large field[J]. Laser Journal, 1999, 20(5): 15-16.

[5] YOSHIRO K, RUI S, KENJI Y, et al. Reconstruction of a high-resolution image-capturing system[J]. Applied Optics(S0003-6935), 2004, 43(8): 1719-1727.

[6] YOSHINORI A, SHOGENJI R, NORIMICH T, et al. Efficient gonio-imaging of optically variable devices by compound-eye image-capturing sytem[J]. Optics Express, 2011, 19(4): 3353-3362.

[7] 徐琰, 颜树华, 周春雷,等. 昆虫复眼的仿生研究进展[J]. 光学技术, 2006, 32(s): 10-12.

    XU Yan, YAN Shu-hua, ZHOU Chun-lei, et al. Advance in bionic study on insects compound eye[J]. Optical Technique, 2006, 32(s): 10-12.

[8] 陈明君, 刘业胜, 李子昂, 等. 仿生光学复眼设计及其制造技术研究新进展[J]. 机械工程学报, 2011, 47(1): 161-168.

    CHEN Ming-jun, LIU Ye-sheng, LI Zi-ang, et al. New research progress in design and manufacture of artificial optical compound eye[J]. Journal of Mechanical Engineering, 2011, 47(1): 161-168.

[9] 邢强, 戴振东, 王浩. 仿复眼的动目标位置快速估计算法[J]. 光子学报, 2014,43(6): 0612001-5.

    XING Qiang, DAI Zhen-dong, WANG Hao. A rapid position estimation algorithm inspired of compound eyes[J]. Acta Photonica Sinaca, 2014, 43(6): 0612001-5.

[10] 姚保利, 雷铭, 薛彬, 等. 高分辨和超分辨光学成像技术在空间和生物中的应用[J].光子学报, 2011, 40(11): 1607-1618.

    YAO Bao-li, LEI Ming, XUE Bin, et al. Progress and applications of high-resolution and super-resolution optical imaging in space and biology[J]. Acta Photonica Sinica, 2011, 40(11): 1607-1618.

[11] 李宏壮, 张振铎, 刘欣悦, 等. 一款宽光谱鱼眼镜头设计[J]. 光子学报, 2012, 41(11): 1312-1316.

    LI Hong-zhuang, ZHANG Zhen-duo, LIU Xin-yue, et al. Optical design of a wide spectral fish-eye lens[J]. Acta Photonica Sinica, 2012, 41(11): 1312-1316.

[12] 田维坚, 姚胜利, 陈荣利, 等. 用于运动目标探测的多通道成像系统[J]. 光子学报, 2002, 31(1): 47-49.

    TIAN Wei-jian, YAO Sheng-li, CHEN Li-rong, et al. Multi-channel imaging system for detecting moving object[J]. Acta Photonica Sinaca, 2002, 31(1): 47-49.

[13] SONG Young-min, XIE Yi-zhu, MALYARCHUK V, et al. Digital cameras with designs inspired by the arthropod eye[J]. Nature, 2013, 497: 95-99.

[14] LI Lei, ALLEN Y. Design and fabrication of a freeform microlens array for a compact large-field-of-view compound-eye camera[J]. Appled Optics, 2012, 51(12): 1843-1852.

[15] 夏元杰, 红建, 石欣, 等. 多视场定焦距CCD摄像系统结构设计及装调[J]. 应用光学, 2012, 33(2): 240-245.

    XIA Yuan-jie, DUAN Hong-jian, SHI Xin, et al. Structure design and adjustment of multiple-field-of-view fix-focal-length CCD camera system[J]. Journal of Applied Optical, 2012, 33(2): 240-245.

[16] 张滋黎, 邾继贵, 耿娜, 等. 双经纬仪三维坐标测量系统设计[J]. 传感技术学报, 2010, 23(5): 660-665.

    ZHANG Zi-li, ZHU Ji-gui, GENG Na, et al. The design of double-theodolite 3D coordinate measurement system[J]. Chense Journal of Sensors and actuators, 2010, 23(5): 660-665.

[17] 杜俊峰, 张孟伟, 张晓明. 双经纬仪测角准确度分析[J]. 应用光学, 2012, 33(3): 466-474.

    DU Jun-feng, ZHANG Meng-wei, ZHANG Xiao-ming. Angle measurement accuracy of photoelectric theodolite[J]. Journal of Applied Optical, 2012, 33(3): 466-474.

高天元, 董正超, 赵宇, 刘智颖. 视场拼接复眼成像系统结构及装调方法[J]. 光子学报, 2014, 43(11): 1122001. GAO Tian-yuan, DONG Zheng-chao, ZHAO Yu, LIU Zhi-ying. Structure and Alignment of Field Stitching Compound Eye Optical Imaging System[J]. ACTA PHOTONICA SINICA, 2014, 43(11): 1122001.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!