光谱学与光谱分析, 2014, 34 (5): 1348, 网络出版: 2014-05-06   

SPA-LS-SVM检测土壤有机质和速效钾研究

Measurement of Soil Organic Matter and Available K Based on SPA-LS-SVM
作者单位
1 浙江大学生物系统工程与食品科学学院, 浙江 杭州310058
2 华东交通大学机电工程学院, 江西 南昌330013
摘要
应用可见/短波近红外光谱分析测量土壤有机质和速效钾含量。 光谱预处理包括平滑, 标准归一化, 多元散射校正和平滑结合一阶导数, 以消除系统噪声和外部干扰, 分别应用偏最小二乘和最小二乘支持向量机方法建立校正模型, 模型的输入为基于连续投影算法得到的特征波长。 比较显示基于连续投影算法得到的特征波长为输入的最小二乘支持向量机优于偏最小二乘法建模。 模型评价指标由相关系数和预测均方误差表示。 有机质的相关系数和预测均方误差分别0.860 2和2.98, 速效钾为0.730 5和15.78。 表明基于连续投影算法可见/短波近红外光谱利用最小二乘支持向量机建模, 可以作为一个精确的土壤有机质和速效钾的测定方法。
Abstract
Visible and short wave infrared spectroscopy (Vis/SW-NIRS) was investigated in the present study for measurement of soil organic matter (OM) and available potassium (K). Four types of pretreatments including smoothing, SNV, MSC and SG smoothing+first derivative were adopted to eliminate the system noises and external disturbances. Then partial least squares regression (PLSR) and least squares-support vector machine (LS-SVM) models were implemented for calibration models. The LS-SVM model was built by using characteristic wavelength based on successive projections algorithm (SPA). Simultaneously, the performance of LS-SVM models was compared with PLSR models. The results indicated that LS-SVM models using characteristic wavelength as inputs based on SPA outperformed PLSR models. The optimal SPA-LS-SVM models were achieved, and the correlation coefficient (r), and RMSEP were 0.860 2 and 2.98 for OM and 0.730 5 and 15.78 for K, respectively. The results indicated that visible and short wave near infrared spectroscopy (Vis/SW-NIRS) (325~1 075 nm) combined with LS-SVM based on SPA could be utilized as a precision method for the determination of soil properties.
参考文献

[1] Cecillon L, Certini G, Lange H, et al. Organic Geochemistry, 2012, 46: 127.

[2] Shao Y N, He Y. Soil Research, 2011, 49(2): 166.

[3] Boyan Kuang A M M. Soil & Tillage Research, 2013, 128: 125.

[4] TIAN Yong-chao, ZHANG Juan-juan, YAO Xia, et al(田永超, 张娟娟, 姚霞, 等). Transactions of the Chinese Society of Agricultural Engineering(农业工程学报), 2012, 28(1): 145.

[5] Yang H F, Qian Y R, Yang F, et al. Soil Science, 2012, 177(11): 674.

[6] MA Shi-bang, TANG Xiu-ying, XU Yang, et al(马世榜, 汤修映, 徐杨. 等). Transactions of the Chinese Society of Agricultural Engineering(农业工程学报), 2012, 28(18): 268.

[7] LIU Xue-mei, LIU Jian-she(刘雪梅, 柳建设). Transactions of the Chinese Society for Agricultural Machinery(农业机械学报), 2013, 44(3): 88.

[8] Vohland M, Emmerling C. European Journal of Soil Science, 2011, 62(4): 598.

[9] Wu D, Shi H, Wang S, et al. Analytica Chimica Acta, 2012, 726(0): 57.

[10] BAO Shi-dan(鲍士旦). Soil Agrochemical Analysis(土壤农化分析). Beijing: China Agriculture Press(北京: 中国农业出版社), 1999. 30.

[11] Mouazen A M, Kuang B, De Baerdemaeker J, et al. Geoderma, 2010, 158(1-2SI): 23.

章海亮, 刘雪梅, 何勇. SPA-LS-SVM检测土壤有机质和速效钾研究[J]. 光谱学与光谱分析, 2014, 34(5): 1348. ZHANG Hai-liang, LIU Xue-mei, HE Yong. Measurement of Soil Organic Matter and Available K Based on SPA-LS-SVM[J]. Spectroscopy and Spectral Analysis, 2014, 34(5): 1348.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!