中国激光, 2014, 41 (11): 1115001, 网络出版: 2014-10-08   

基于反射式Bragg体光栅的密集光谱合束数值模拟研究

Numerical Simulation Study on Dense Spectral Combing Based on Reflection Volume Bragg Grating
余俊宏 1,2,*郭林辉 1,2孟慧成 1,2,3谭昊 1,2高松信 1,2武德勇 1,2
作者单位
1 中国工程物理研究院高能激光科学与技术重点实验室, 四川 绵阳 621999
2 中国工程物理研究院应用电子学研究所, 四川 绵阳 621999
3 中国工程物理研究院研究生部, 北京 100088
摘要
基于反射式布拉格(Bragg)体光栅(VBG)的密集光谱合束是实现半导体激光器光纤耦合向高亮度发展的重要手段,建立了同时考虑发散角、光谱带宽、Bragg波长偏移量和Bragg角度偏移量的反射式VBG衍射效率计算模型。基于新建立的计算模型,提出了半导体激光器(DL)光纤耦合模块双波长合束的反射式VBG参数优化方法。结果表明:在优化选择的VBG参数下,DL光纤耦合模块双波长合束在满足入射光束(衍射效率大于90%的发散角14 mrad,半峰全宽为0.3 nm)中心波长偏移小于±0.49 nm,入射角度相对于Bragg角偏移小于±16 mrad的条件下,可达到大于98.7%的合束效率。
Abstract
Dense spectral combining (DSC) based on reflection volume Bragg grating (VBG) is an important method to improve brightness of fiber-coupled diode laser modular. Accounting for laser divergence, spectral bandwidth, wavelength and angle shifts from ideal Bragg condition, a diffraction efficiency model of reflection VBG is presented. Based on the new numerical model of diffraction efficiency, design principles and technical approach for DSC of two channels by reflection volume Bragg grating are investigated. The results show if wavelength shift is less than ±0.49 nm and angle shift is less than ±16 mrad from ideal Bragg condition, the DSC combining efficiencies are over 98.7% when the spectral full width at half-maximum (FWHM) is 0.3 nm, and the divergence angle with over 90% energy is 14 mrad.
参考文献

[1] 宋锐,侯静,王彦斌, 等. 线形腔半导体可饱和吸收镜被动锁模掺镱光纤激光器[J]. 中国激光, 2014, 41(1): 0102007.

    Song Rui, Hou Jing, Wang Yanbin, et al.. Ytterbium-doped fiber laser passively mode-locked by a semiconductor saturable absorber mirror in linear cavity[J]. Chinese J Lasers, 2014, 41(1): 0102007.

[2] 于秀娟, 张敏, 王利威, 等. 镀高折射率纳米膜的长周期光纤光栅特性研究[J]. 光学学报, 2009, 29(10): 2665-2672.

    Yu Xiujuan, Zhang Min, Wang Liwei, et al.. Characteristics of long-period optical fiber grating with high refractive index nm-thick film overlay[J]. Acta Optica Sinica, 2009, 29(10): 2665-2672.

[3] 蒲世兵, 姜宗福, 许晓军. 基于体布拉格光栅的光谱合成的数值分析[J]. 强激光与粒子束, 2008, 20(5): 721-724.

    Pu Shibing, Jiang Zongfu, Xu Xiaojun. Numerical analysis of spectral beam combining by volume Bragg grating[J]. High Power Laser and Particle Beams, 2008, 20(5): 721-724.

[4] Yi Yingyan, Li Min, Hu Changkai. Simulation study on spectrum beam combining based on reflection volume Bragg grating[C]. SPIE, 2012, 8333: 83330D.

[5] Derrek R Drachenberg, Oleksiy Andrusyak, George Venus, et al.. Ultimate efficiency of spectral beam combing by volume Bragg gratings[J]. Appl Opt, 2013, 52(30): 7233-7242.

[6] H Kogelnik. Coupled wave theory for thick hologram gratings[J]. Bell Syst Technol J, 1969, 48(9): 2909-2945.

[7] 周旻超,江先锋,张丽芳,等. 大功率半导体激光器叠阵的光学性能[J]. 中国激光, 2013, 40(12): 1202004.

    Zhou Minchao, Jiang Xianfeng, Zhang Lifang, et al.. Optical performance of high power laser diode stack[J]. Chinese J Lasers, 2013, 40(12): 1202004.

[8] 张俊, 单肖楠, 刘云, 等. 千瓦级高光束质量半导体激光线阵合束光源[J]. 中国激光, 2012, 39(2): 0202010.

    Zhang Jun, Shan Xiaonan, Liu Yun, et al.. Kilowatt-output high beam quality diode laser linear array coupling source[J]. Chinese J Lasers, 2012, 39(2): 0202010.

[9] 张俊,彭航宇,刘云,等. 三波长合束高亮度半导体激光光源[J]. 中国激光, 2013, 40(4): 0402011.

    Zhang Jun, Peng Hangyu, Liu Yun, et al.. High brightness diode laser source based on three-wavelength multiplexing[J]. Chinese J Lasers, 2013, 40(4): 0402011.

余俊宏, 郭林辉, 孟慧成, 谭昊, 高松信, 武德勇. 基于反射式Bragg体光栅的密集光谱合束数值模拟研究[J]. 中国激光, 2014, 41(11): 1115001. Yu Junhong, Guo Linhui, Meng Huicheng, Tan Hao, Gao Songxin, Wu Deyong. Numerical Simulation Study on Dense Spectral Combing Based on Reflection Volume Bragg Grating[J]. Chinese Journal of Lasers, 2014, 41(11): 1115001.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!