光学学报, 2001, 21 (12): 1409, 网络出版: 2006-08-10   

一种基于非线性光纤环镜开关特性的超短光孤子产生方法

Generation of Bright and Dark Soliton Trains from Continuous-Wave Light Using the Switching Characteristics of a Nonlinear-Optical Loop Mirror
作者单位
1 五邑大学电子与信息工程系,江门,529020
2 华南师范大学量子电子学研究所,广州,510631
摘要
提出了一种利用非线性光纤环镜的开关特性将连续波同时转化为亮孤子和暗孤子的新方法,即让连续波和另一波长的调制脉冲串共同耦合入光纤环镜,交叉相位调制使得一部分连续波被环镜透射,其余部分被反射;再让透射波和反射波分别在反常色散光纤和正常色散光纤中传输,自相位调制和群速度色散之间的相互作用使得透射波和反射波分别演化为亮、暗孤子.数值计算表明,该方法不仅可产生脉宽比调制脉冲窄、重复频率比调制脉冲高的亮孤子和暗孤子,而且几乎可将全部的连续波能量转化为孤子能量.
Abstract
A novel technique for the simultaneous generation of bright and dark soliton trains from continuous wave (CW) light is proposed and demonstrated numerically. It is based on the optical switching characteristics of a nonlinear optical loop mirror (NOLM) through which the CW signal is switched by a pump pulse train at another wavelength by the creation of cross phase modulation induced phase bias between the counter propagating CW components. The transmitted and reflected signals exiting from the NOLM can then evolve, respectively, into bright and dark soliton trains in fibers with the appropriate group velocity dispersion at the signal wavelength. Numerical simulations indicate that the generated solitons can be narrower than the pump pulse and that the repetition rate of the soliton trains can be higher than that of the pump pulses. Moreover, this technique permits the conversion of nearly all of the CW energy into the soliton train energy without generating pulse pedestals.
参考文献

[1] Agrawal G P. Fiber-Optic Communication Systems. 2nd ed., New York:John Wiley & Sons. Inc., 1997. 467~533

[2] Agrawal G P. Nonlinear Fiber Optics. 2nd ed., San Diego, Boston, New York:Academic Press, 1995. 133~200

[3] Zhao W, Bourkoff E. Propagation properties of dark solitons. Opt. Lett., 1989, 14(13):703~705

[4] Zhao W, Bourkoff E. Generation, propagation, and amplification of dark solitons. J. Opt. Soc. Am. (B), 1992, 9(7):1134~1144

[5] Zhao W, Bourkoff E. Interactions between dark solitons. Opt. Lett., 1989, 14(23):1371~1373

[6] Nakazawa M, Suzuki K. Generation of a pseudorandom dark soliton data train and its coherent detection by one-bit-shifting with a Mach-Zehnder interferometer. Electron. Lett., 1995, 31(13):1084~1085

[7] Okhotnikov O G, Araujo F M. Pulse generation through optical switching in phase driven loop mirror. Electron. Lett., 1995, 31(25):2197~2198

[8] Tai K, Tomita A, Jewell J L et al.. Generation of subpicosecond solitonlike optical pulses at 0.3 THz repetition rate by induced modulational instability. Appl. Phys. Lett., 1986, 49(5):236~238

[9] Mamyshev P V, Chernikov S V, Dianov E M et al.. Generation of a high-repetition-rate train of practically noninteracting solitons by using the induced modulational instability and Raman self scattering effects. Opt. Lett., 1990, 15(23):1365~1367

[10] Millot G, Seve E, Wabnitz S et al.. Dark-soliton-like pulse-train generation from induced modulational polarization instability in a birefrigent fiber. Opt. Lett., 1998, 23(7):511~513

[11] Seve E, Millot G, Wabnitz S et al.. Generation of vector dark-soliton trains by induced modulational instability in a highly birefrigent fiber. J. Opt. Soc. Am. (B), 1999, 16(10):1642~1650

[12] Mamyshev P V, Chernikov S V, Dianov E M. Generation of fundamental soliton trains for high-bit-rate optical fiber communication lines. IEEE J. Quantum Electron., 1991, QE-27(10):2347~2355

[13] Richardson D J, Chamberlin R P, Dong L et al.. Experimental demonstration of 100 GHz dark soliton generation and propagation using a dispersion decreasing fiber. Electron. Lett., 1994, 30(16):1326~1327

[14] Chernikov S V, Taylor J R, Kashyap R. Comblike dispersion-profiled fiber for soliton pulse train generation. Opt. Lett., 1994, 19(8):539~541

[15] Atieh A K, Myslinski P, Chrostowski J et al.. Generation of multigigahertz bright and dark soliton pulse trains. Opt. Commun., 1997, 133(1~6):541~548

[16] Chernikov S V, Taylor J R, Kashyap R. Experimental demonstration of step-like dispersion profiling in optical fibre for soliton pulse generation and compression. Electron. Lett., 1994, 30(5):433~434

[17] Chernikov S V, Dianov E M, Richardson D J et al.. 144 Gbit/s soliton train generation through Raman self-scattering of a dual frequency beat signal in dispersion optical fiber. Appl. Phys. Lett., 1993, 63(2):293~295

[18] Nelson B P, Blow K J, Constantine P D et al.. All-optical Gbit/s switching using nonlinear optical loop mirror. Electron. Lett., 1991, 27(9):704~705

[19] Blow K J, Doran N J, Nelson B P. Demonstration of the nonlinear fiber loop mirror as an ultrafast all-optical demultiplexer. Electron. Lett., 1990, 26(14):962~964

[20] Jinno M, Matsumoto T. Ultrafast all-optical logic operations in a nonlinear Sagnac interferometer with two control beams. Opt. Lett., 1991, 16(4):220~222

[21] Blow K J, Doran N J, Nayar B K et al.. Two-wavelength operation of the nonlinear fiber loop mirror. Opt. Lett., 1990, 15(4):248~250

[22] Lee H K, Kim K H, Jeon M Y et al.. All-optical wavelength conversion using cavity dumped fiber laser with nonlinear optical loop mirror. Electron. Lett., 1997, 33(9):791~792

[23] Doran N J, Wood D. Nonlinear-optical loop mirror. Opt. Lett., 1988, 13(1):56~58

[24] Blow K J, Doran N J. Multiple dark soliton solutions of the nonlinear Schrodinger equation. Phys. Lett. (A), 1985, 107(2):55~58

[25] Krokel D, Halas N J, Giuliani G et al.. Dark-pulse propagation in optical fibers. Phys. Rev. Lett., 1988, 60(1):29~32

[26] Islam M N, Sunderman E R, Stolen R H et al.. Soliton switching in a fiber nonlinear loop mirror. Opt. Lett., 1989, 14(15):811~813

[27] Stolen R H, Botineau J, Ashkin A. Intensity discrimination of optical pulses with birefringent fibers. Opt. Lett., 1982, 7(11):512~514

[28] 曹文华,刘颂豪. 光纤中基于拉曼放大与脉冲压缩的超短光孤子产生. 光学学报, 1999, 19(3):374~381

[29] 曹文华,张有为,郭旗等. 脉冲离散效应对光纤中基于交叉相位调制的脉冲压缩的影响. 光学学报, 1996, 16(12):1737~1744

[30] Cao Wenhua, Chan Kamtai. Cross-phase modulation induced ultrashort pulse train generation from CW light in the normal-dispersion regime of optical fibers. Opt. Commun., 1999, 163(1~3):285~291

曹文华, 刘颂豪, 郭旗. 一种基于非线性光纤环镜开关特性的超短光孤子产生方法[J]. 光学学报, 2001, 21(12): 1409. 曹文华, 刘颂豪, 郭旗. Generation of Bright and Dark Soliton Trains from Continuous-Wave Light Using the Switching Characteristics of a Nonlinear-Optical Loop Mirror[J]. Acta Optica Sinica, 2001, 21(12): 1409.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!