激光与光电子学进展, 2018, 55 (10): 103201, 网络出版: 2018-10-14   

高功率小型光纤飞秒激光放大系统 下载: 641次

High Power Compact Fiber Femtosecond Laser Amplification System
作者单位
上海理工大学光电信息与计算机工程学院, 上海 200093
摘要
介绍一种新的高功率、便携式光纤飞秒激光系统。该系统以半导体可饱和吸收锁模光纤激光器作为种子源, 通过光纤布拉格光栅对波长进行选择。振荡器输出的种子光经过两级单模掺镱光纤、一级双包层掺镱光纤预放大后, 进入主放大系统。主放大系统采用大模场掺镱光子晶体光纤放大, 并通过控制放大过程中产生的非线性积累, 有效降低非线性效应对脉冲的影响。加入声光调制器, 使输出重复频率可调, 并通过透射式光栅对, 对输出的脉冲进行压缩, 最终获得平均功率为1.34 W、重复频率为300 kHz、工作波长为1030 nm、脉冲宽度为202 fs的激光输出, 对应单脉冲能量为4.5 μJ, 峰值功率为22 MW。整套激光系统便携、稳定、成本较低, 可以进行广泛的生产应用。
Abstract
A high power portable femtosecond fiber laser system is demonstrated. This system uses semiconductor saturable absorb mode-locked fiber laser as the seed source and selects the wavelength through the fiber Bragg grating. The seed light output by the oscillator enters the main amplifier system after being pre-amplified by two-stage single-mode ytterbium-doped fiber and first-order double-clad ytterbium-doped fiber. The main amplifier uses a large mode field of ytterbium-doped photonic crystal fiber to amplifier, and effectively reduces the effect of nonlinear effect on the pulse by controlling the nonlinear accumulation in the amplification process. An acousto-optic modulator is added to make the output repetition frequency adjustable, and the output pulse is compressed through the transmission grating to obtain the laser output. The final output has an average power of 1.34 W, a repetition rate of 300 kHz, a working wavelength of 1030 nm and a pulse duration of 202 fs, and the corresponding single pulse energy is 4.5 μJ, peak power is 22 MW. The complete laser system is portable, stable, and cost-effective, and can be widely used in production.
参考文献

[1] 朱江峰, 魏志义. 飞秒激光精密微纳加工的研究进展[J]. 物理, 2006, 35(8): 679-683.

    Zhu J F, Wei Z Y. Femtosecond laser micro-nano fabrication[J]. Physics, 2006, 35(8): 679-683.

[2] Tonouchi M. Cutting-edge terahertz technology[J]. Nature Photonics, 2007, 1(2): 97-105.

[3] Hu C Z, Chen T, Jiang P P, et al. Broadband high-power mid-IR femtosecond pulse generation from an ytterbium-doped fiber laser pumped optical parametric amplifier[J]. Optics Letters, 2015, 40(24): 5774-5777.

[4] 刘墨南, 李木天, 孙洪波. 3D飞秒激光纳米打印[J]. 激光与光电子学进展, 2018, 55(1): 011410.

    Liu M N, Li M T, Sun H B. 3D femtosecond laser nanoprinting[J]. Laser & Optoelectronics Progress, 2018, 55(1): 011410.

[5] Peng E, Bell R, Zuhlke C A, et al. Growth mechanisms of multiscale, mound-like surface structures on titanium by femtosecond laser processing[J]. Journal of Applied Physics, 2017, 122(13): 133108.

[6] 李峰, 杨直, 赵卫, 等. 百微焦级飞秒光纤激光放大系统[J]. 中国激光, 2015, 42(12): 1202005.

    Li F, Yang Z, Zhao W, et al. Hundred micro-joules level femtosecond fiber laser amplification system[J]. Chinese Journal of Lasers, 2015, 42(12): 1202005.

[7] 王清月, 胡明列, 柴路. 光子晶体光纤非线性光学研究新进展[J]. 中国激光, 2006, 33(1): 57-66.

    Wang Q Y, Hu M L, Chai L. Progress in nonlinear optics with photonic crystal fibers[J]. Chinese Journal of Lasers, 2006, 33(1): 57-66.

[8] Hao Q, Li W X, Zeng H P. High-power Yb-doped fiber amplification synchronized with a few-cycle Ti:sapphire laser[J]. Optics Express, 2009, 17(7): 5815-5821.

[9] Agrawal G P. Optical pulse propagation in doped fiber amplifiers[J]. Physical Review A, 1991, 44(11): 7493-7501.

[10] Rser F, Eidam T, Rothhardt J, et al. Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system[J]. Optics Letters, 2007, 32(24): 3495-3497.

[11] Eidam T, Rothhardt J, Stutzki F, et al. Fiber chirped-pulse amplification system emitting 38 GW peak power[J]. Optics Express, 2010, 19(1): 255-260.

[12] 方晓惠, 胡明列, 刘博文, 等. 百兆瓦峰值功率的多芯光子晶体光纤飞秒激光放大系统[J]. 中国激光, 2010, 37(9): 2366-2370.

    Fang X H, Hu M L, Liu B W, et al. Hundreds of megawatts peak power multi-core photonic crystal fiber laser amplifier[J]. Chinese Journal of Lasers, 2010, 37(9): 2366-2370.

[13] 文亮, 刘博文, 宋寰宇, 等. 高功率、高质量全保偏光纤飞秒激光放大系统[J]. 中国激光, 2017, 44(2): 0201001.

    Wen L, Liu B W, Song H Y, et al. All polarization-maintaining fiber amplification system to generate high-power and high-quality femtosecond laser pulses[J]. Chinese Journal of Lasers, 2017, 44(2): 0201011.

[14] 郝静宇, 刘博文, 宋寰宇, 等. 基于三阶色散补偿的光纤飞秒激光放大系统[J]. 激光与光电子学进展, 2018, 55(5): 051404.

    Hao J Y, Liu B W, Song H Y, et al. Femtosecond fiber amplification system based on third-order dispersion compensation technique[J]. Laser & Optoelectronics Progress, 2018, 55(5): 051404.

[15] 孙若愚, 谭方舟, 金东臣, 等. 基于色散波的1 μm飞秒光纤啁啾脉冲放大系统[J]. 中国激光, 2018, 45(1): 0101001.

    Sun R Y, Tan F Z, Jin D C, et al. 1 μm femtosecond fiber chirped pulse amplification system based on dispersion wave[J]. Chinese Journal of Lasers, 2018,45(1): 0101001.

[16] Zaouter Y, Papadopoulos D N, Hanna M, et al. Stretcher-free high energy nonlinear amplification of femtosecond pulses in rod-type fibers[J]. Optics Letters, 2008, 33(2): 107-109.

[17] Liu Y, Li W X, Luo D P, et al. Generation of 33 fs 935 W average power pulses from a third-order dispersion managed self-similar fiber amplifier[J]. Optics Express, 2016, 24(10): 10939-10945.

周锋全, 袁帅, 郭政儒, 郝强, 徐晖, 曾和平. 高功率小型光纤飞秒激光放大系统[J]. 激光与光电子学进展, 2018, 55(10): 103201. Zhou Fengquan, Yuan Shuai, Guo Zhengru, Hao Qiang, Xu Hui, Zeng Heping. High Power Compact Fiber Femtosecond Laser Amplification System[J]. Laser & Optoelectronics Progress, 2018, 55(10): 103201.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!