光学学报, 2018, 38 (2): 0201001, 网络出版: 2018-08-30   

基于小波去噪算法的全天时大气水汽拉曼激光雷达探测与分析 下载: 1118次

Detection and Analysis of All-Day Atmospheric Water Vapor Raman Lidar Based on Wavelet Denoising Algorithm
作者单位
西安理工大学机械与精密仪器工程学院, 陕西 西安 710048
引用该论文

王玉峰, 曹小明, 张晶, 汤柳, 宋跃辉, 狄慧鸽, 华灯鑫. 基于小波去噪算法的全天时大气水汽拉曼激光雷达探测与分析[J]. 光学学报, 2018, 38(2): 0201001.

Yufeng Wang, Xiaoming Cao, Jing Zhang, Liu Tang, Yuehui Song, Huige Di, Dengxin Hua. Detection and Analysis of All-Day Atmospheric Water Vapor Raman Lidar Based on Wavelet Denoising Algorithm[J]. Acta Optica Sinica, 2018, 38(2): 0201001.

参考文献

[1] Harries J E. Atmospheric radiation and atmospheric humidity[J]. Quarterly Journal of the Royal Meteorological Society, 1997, 123(544): 2173-2186.

    Harries J E. Atmospheric radiation and atmospheric humidity[J]. Quarterly Journal of the Royal Meteorological Society, 1997, 123(544): 2173-2186.

[2] Soden B J, Held I M. An assessment of climate feedbacks in coupled atmosphere-ocean models[J]. Journal of Climate, 2006, 19(14): 3354-3360.

    Soden B J, Held I M. An assessment of climate feedbacks in coupled atmosphere-ocean models[J]. Journal of Climate, 2006, 19(14): 3354-3360.

[3] Mears C A, Santer B D, Wentz F J, et al. Relationship between temperature and precipitable water changes over tropical oceans[J]. Geophysical Research Letters, 2007, 34(24): L24709.

    Mears C A, Santer B D, Wentz F J, et al. Relationship between temperature and precipitable water changes over tropical oceans[J]. Geophysical Research Letters, 2007, 34(24): L24709.

[4] King M D, Menzel W P, Kaufman Y J, et al. Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(2): 442-458.

    King M D, Menzel W P, Kaufman Y J, et al. Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(2): 442-458.

[5] Jia J Y, Yi F. Atmospheric temperature measurements at altitudes of 5-30 km with a double-grating-based pure rotational Raman lidar[J]. Applied Optics, 2014, 53(24): 5330-5343.

    Jia J Y, Yi F. Atmospheric temperature measurements at altitudes of 5-30 km with a double-grating-based pure rotational Raman lidar[J]. Applied Optics, 2014, 53(24): 5330-5343.

[6] 吕立慧, 刘文清, 张天舒, 等. 基于激光雷达的京津冀地区大气边界层高度特征研究[J]. 激光与光电子学进展, 2017, 54(1): 010101.

    吕立慧, 刘文清, 张天舒, 等. 基于激光雷达的京津冀地区大气边界层高度特征研究[J]. 激光与光电子学进展, 2017, 54(1): 010101.

    Lü L H, Liu W Q, Zhang T S, et al. Characteristics of boundary layer height in Jing-Jin-Ji area based on lidar[J]. Laser & Optoelectronics Progress, 2017, 54(1): 010101.

    Lü L H, Liu W Q, Zhang T S, et al. Characteristics of boundary layer height in Jing-Jin-Ji area based on lidar[J]. Laser & Optoelectronics Progress, 2017, 54(1): 010101.

[7] 徐继伟, 刘东, 谢晨波, 等. 大气气溶胶谱分布的多波长拟合模拟反演研究[J]. 光学学报, 2017, 37(10): 1001006.

    徐继伟, 刘东, 谢晨波, 等. 大气气溶胶谱分布的多波长拟合模拟反演研究[J]. 光学学报, 2017, 37(10): 1001006.

    Xu J W, Liu D, Xie C B, et al. Multi-wavelength fitting simulation and inversion of atmospheric aerosol spectrum distribution[J]. Acta Optica Sinica, 2017, 37(10): 1001006.

    Xu J W, Liu D, Xie C B, et al. Multi-wavelength fitting simulation and inversion of atmospheric aerosol spectrum distribution[J]. Acta Optica Sinica, 2017, 37(10): 1001006.

[8] 成中涛, 刘东, 刘崇, 等. 多纵模高光谱分辨率激光雷达研究[J]. 光学学报, 2017, 37(4): 0401001.

    成中涛, 刘东, 刘崇, 等. 多纵模高光谱分辨率激光雷达研究[J]. 光学学报, 2017, 37(4): 0401001.

    Cheng Z T, Liu D, Liu C, et al. Multi-longitudinal-mode high-spectral-resolution lidar[J]. Acta Optica Sinica, 2017, 37(4): 0401001.

    Cheng Z T, Liu D, Liu C, et al. Multi-longitudinal-mode high-spectral-resolution lidar[J]. Acta Optica Sinica, 2017, 37(4): 0401001.

[9] 李亚娟, 宋沙磊, 李发泉, 等. 基于纯转动Raman激光雷达的中低空大气温度高精度探测[J]. 地球物理学报, 2015, 58(7): 2294-2305.

    李亚娟, 宋沙磊, 李发泉, 等. 基于纯转动Raman激光雷达的中低空大气温度高精度探测[J]. 地球物理学报, 2015, 58(7): 2294-2305.

    Li Y J, Song S L, Li F Q, et al. High-precision measurements of lower atmospheric temperature based on pure rotational Raman lidar[J]. Chinese Journal of Geophysics, 2015, 58(7): 2294-2305.

    Li Y J, Song S L, Li F Q, et al. High-precision measurements of lower atmospheric temperature based on pure rotational Raman lidar[J]. Chinese Journal of Geophysics, 2015, 58(7): 2294-2305.

[10] 王玉峰, 高飞, 朱承炫, 等. 对流层高度大气温度、湿度和气溶胶的拉曼激光雷达系统[J]. 光学学报, 2015, 35(3): 0328004.

    王玉峰, 高飞, 朱承炫, 等. 对流层高度大气温度、湿度和气溶胶的拉曼激光雷达系统[J]. 光学学报, 2015, 35(3): 0328004.

    Wang Y F, Gao F, Zhu C X, et al. Raman lidar for atmospheric temperature, humidity and aerosols up to troposphere height[J]. Acta Optica Sinica, 2015, 35(3): 0328004.

    Wang Y F, Gao F, Zhu C X, et al. Raman lidar for atmospheric temperature, humidity and aerosols up to troposphere height[J]. Acta Optica Sinica, 2015, 35(3): 0328004.

[11] Froidevaux M, Higgins C W, Simeonov V, et al. A Raman lidar to measure water vapor in the atmospheric boundary layer[J]. Advances in Water Resources, 2013, 51: 345-356.

    Froidevaux M, Higgins C W, Simeonov V, et al. A Raman lidar to measure water vapor in the atmospheric boundary layer[J]. Advances in Water Resources, 2013, 51: 345-356.

[12] 谢晨波, 周军, 岳古明, 等. 新型车载式拉曼激光雷达测量对流层水汽[J]. 光学学报, 2006, 26(9): 1281-1286.

    谢晨波, 周军, 岳古明, 等. 新型车载式拉曼激光雷达测量对流层水汽[J]. 光学学报, 2006, 26(9): 1281-1286.

    Xie C B, Zhou J, Yue G M, et al. New mobile Raman lidar for measurement of tropospheric water vapor[J]. Acta Optica Sinica, 2006, 26(9): 1281-1286.

    Xie C B, Zhou J, Yue G M, et al. New mobile Raman lidar for measurement of tropospheric water vapor[J]. Acta Optica Sinica, 2006, 26(9): 1281-1286.

[13] 田力, 郭胜利, 卜令兵, 等. 利用小波降噪的瑞利激光雷达平流层温度反演[J]. 红外与激光工程, 2012, 41(3): 649-654.

    田力, 郭胜利, 卜令兵, 等. 利用小波降噪的瑞利激光雷达平流层温度反演[J]. 红外与激光工程, 2012, 41(3): 649-654.

    Tian L, Guo S L, Bu L B, et al. Stratosphere temperature inversion algorithm of Rayleigh lidar using wavelet-denosing[J]. Infrared and Laser Engineering, 2012, 41(3): 649-654.

    Tian L, Guo S L, Bu L B, et al. Stratosphere temperature inversion algorithm of Rayleigh lidar using wavelet-denosing[J]. Infrared and Laser Engineering, 2012, 41(3): 649-654.

[14] Wu S H, Liu Z S, Liu B Y. Enhancement of lidar back scatters signal-to-noise ratio using empirical mode decomposition method[J]. Optics Communications, 2006, 267(1): 137-144.

    Wu S H, Liu Z S, Liu B Y. Enhancement of lidar back scatters signal-to-noise ratio using empirical mode decomposition method[J]. Optics Communications, 2006, 267(1): 137-144.

[15] Tian P F, Cao X J, Liang J N, et al. Improved empirical mode decomposition based denoising method for lidar signals[J]. Optics Communications, 2014, 325: 54-59.

    Tian P F, Cao X J, Liang J N, et al. Improved empirical mode decomposition based denoising method for lidar signals[J]. Optics Communications, 2014, 325: 54-59.

[16] Yin S H, Wang W R. Denoising lidar signal by combining wavelet improved threshold with wavelet domain spatial filtering[J]. Chinese Optics Letters, 2006, 4(12): 694-696.

    Yin S H, Wang W R. Denoising lidar signal by combining wavelet improved threshold with wavelet domain spatial filtering[J]. Chinese Optics Letters, 2006, 4(12): 694-696.

[17] Zhou Z R, Hua D X, Wang Y F, et al. Improvement of the signal to noise ratio of Lidar echo signal based on wavelet de-noising technique[J]. Optics and Lasers in Engineering, 2013, 51(8): 961-966.

    Zhou Z R, Hua D X, Wang Y F, et al. Improvement of the signal to noise ratio of Lidar echo signal based on wavelet de-noising technique[J]. Optics and Lasers in Engineering, 2013, 51(8): 961-966.

[18] 刘柏年, 皇群博, 张卫民, 等. 集合背景误差方差中小波阈值去噪方法研究及试验[J]. 物理学报, 2017, 66(2): 020505.

    刘柏年, 皇群博, 张卫民, 等. 集合背景误差方差中小波阈值去噪方法研究及试验[J]. 物理学报, 2017, 66(2): 020505.

    Liu B N, Huang Q B, Zhang W M, et al. Invesitgation and experiments of wavelet thresholding in ensemble-based background error variance[J]. Acta Physica Sinica, 2017, 66(2): 020505.

    Liu B N, Huang Q B, Zhang W M, et al. Invesitgation and experiments of wavelet thresholding in ensemble-based background error variance[J]. Acta Physica Sinica, 2017, 66(2): 020505.

[19] 毛建东, 华灯鑫, 王玉峰, 等. 基于小波包分析的激光雷达信号消噪算法的研究[J]. 中国激光, 2011, 38(2): 0209001.

    毛建东, 华灯鑫, 王玉峰, 等. 基于小波包分析的激光雷达信号消噪算法的研究[J]. 中国激光, 2011, 38(2): 0209001.

    Mao J D, Hua D X, Wang Y F, et al. Noise reduction in lidar signal based on wavelet packet analysis[J]. Chinese Journal of Lasers, 2011, 38(2): 0209001.

    Mao J D, Hua D X, Wang Y F, et al. Noise reduction in lidar signal based on wavelet packet analysis[J]. Chinese Journal of Lasers, 2011, 38(2): 0209001.

[20] 孙磊, 张志利, 谭立龙, 等. 采用小波阈值的时变光栅莫尔信号去噪方法[J]. 红外与激光工程, 2010, 39(3): 576-580.

    孙磊, 张志利, 谭立龙, 等. 采用小波阈值的时变光栅莫尔信号去噪方法[J]. 红外与激光工程, 2010, 39(3): 576-580.

    Sun L, Zhang Z L, Tan L L, et al. Denoising method of dynamic grating Moiré signal based on wavelet threshold[J]. Infrared and Laser Engineering, 2010, 39(3): 576-580.

    Sun L, Zhang Z L, Tan L L, et al. Denoising method of dynamic grating Moiré signal based on wavelet threshold[J]. Infrared and Laser Engineering, 2010, 39(3): 576-580.

[21] Fang H T, Huang D S. Noise reduction in lidar signal based on discrete wavelet transform[J]. Optics Communications, 2004, 233(1/2/3): 67-76.

    Fang H T, Huang D S. Noise reduction in lidar signal based on discrete wavelet transform[J]. Optics Communications, 2004, 233(1/2/3): 67-76.

王玉峰, 曹小明, 张晶, 汤柳, 宋跃辉, 狄慧鸽, 华灯鑫. 基于小波去噪算法的全天时大气水汽拉曼激光雷达探测与分析[J]. 光学学报, 2018, 38(2): 0201001. Yufeng Wang, Xiaoming Cao, Jing Zhang, Liu Tang, Yuehui Song, Huige Di, Dengxin Hua. Detection and Analysis of All-Day Atmospheric Water Vapor Raman Lidar Based on Wavelet Denoising Algorithm[J]. Acta Optica Sinica, 2018, 38(2): 0201001.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!