激光与光电子学进展, 2013, 50 (11): 110003, 网络出版: 2013-10-20   

相位调制到强度调制转换技术的研究动态 下载: 1008次

Development of Research on Phase Modulation to Intensity Modulation Conversion
作者单位
北京航空航天大学仪器科学与光电工程学院, 北京 100191
摘要
针对广泛应用于微波光子系统中的相位调制到强度调制(PM-IM)转换进行了原理和方法特点的分析,总结了PM-IM转换的分类。根据PM-IM转换在微波光子滤波器、超宽带(UWB)系统、全光微波产生、光子微波频率变换和微波频率瞬时监测等领域中的重要应用做了详细的跟踪研究,阐述了PM-IM转换技术的优势。最后,指出PM-IM转换的发展趋势是提高转换速度和精度、减少插入损耗和提高系统的可靠性。
Abstract
The principle and technique characteristics of phase-modulation to intensity-modulation conversion (PM-IM), which is widely used in microwave photonic system, are analyzed. Categories of PM-IM are summarized. The applications of microwave photonic filter, ultra-wideband (UWB) system, all-optical microwave generation, microwave frequency conversion and instantaneous microwave frequency measurement are introduced in detail, and the advantages of PM-IM are discussed. At last, it is pointed out that the research directions of PM-IM are improving rate and precision, reducing insert loss and improving system reliability.
参考文献

[1] J Seed. Microwave photonics[J]. IEEE Trans Microwave Theory Technol, 2002, 50(3): 877-887.

[2] J P Yao, Z Fei, Q Wang. Photonic generation of ultrawideband signals[J]. J Lightwave Technol, 2007, 25(11): 3219-3235.

[3] A R Chrapyvy, R W Tkach, L L Buhl, et al.. Phase modulation to amplitude modulation conversion of CW laser light in optical fibers[J]. Electron Lett, 1986, 22(8): 409-410.

[4] N G Walker, D Wake, I C Smith. Efficent millimeter-wave signal generation through FM-IM conversion in dispersive optical fiber links[J]. Electron Lett, 1992, 28(21): 2027-2028.

[5] J Marti, F Ramos, V Polo, et al.. Millimeter-wave generation and harmonic upconversion through PM-IM conversion in chirped fiber gatings[J]. Electron Lett, 1999, 35(15): 1265-1266.

[6] W Li, N H Zhu, L X Wang, et al.. Broadband phase-to-intensity modulation conversion for microwave photonics processing using Brillouin-assisted carrier phase shift[J]. J Lightw Technol, 2011, 29(24): 3616-3621.

[7] X S Yao. Phase-to-amplitude modulation conversion using Brillouin selective sideband amplification[J]. IEEE Photon Technol Lett, 1998, 10(2): 264-266.

[8] F Zeng, J P Yao. Frequency domain analysis of fiber Bragg grating based phase modulation to intensity modulation conversion[C]. SPIE, 2005, 5971: 594-601.

[9] J Capmany, B Ortega, D Pastor. A tutorial on microwave photonic filters[J]. J Lightw Technol, 2006, 24(1): 201-209.

[10] F Zeng, J Yao. Investigation of phase-modulator-based all-optical bandpass microwave filter[J]. J Lightwave Technol, 2005, 23(4): 1721-1728.

[11] S Sales, J Capmany, J Martí, et al.. Experiment demonstration of fiber-optic delay line filters with negative coefficients[J]. Electron Lett, 1995, 31(13): 1095-1096.

[12] T Yost, P Herczfeld, A Rosen et al.. Hybrid transversal filter utilizing MMIC and optical fiber delay lines[J]. IEEE Microw Guided Wave Lett, 1995, 5(9): 287-289.

[13] F Coppinger, S Yegnanarayanan, P D Trinh, et al.. All-optical RF filter using amplitude inversion in a SOA[J]. IEEE Trans Microw Theory Tech, 1997, 45(8): 1473-1477.

[14] J Mora, B Ortege, M V Andrés, et al.. Tunable all-optical negative multi-tap microwave filters based on uniform fiber Bragg gratings[J]. Opt Lett, 2003, 28(15): 1308-1310.

[15] J Capmany, D Pastor, A Martinez, et al.. Microwave photonic filters with negative coefficients based on phase inversion in an electro-optic modulator[J]. Opt Lett, 2003, 28(16): 1415-1417.

[16] B Vidal, J L Corral, J Marti. All-optical WDM microwave filter With negative coefficients[J]. IEEE Photon Technol Lett, 2005, 17(3): 666-668.

[17] F Zeng, J Wang, J P Yao. All-optical microwave bandpass filter with negative coefficients based on a phase modulator and linearly chirped fiber Bragg gratings[J]. Opt Lett, 2005, 30(17): 2203-2205.

[18] J Wang, F Zeng, J P Yao. All-optical microwave bandpass filter with negative coefficients based on PM-IM conversion[J]. IEEE Photon Technol Lett, 2005,17(10): 2176-2178.

[19] J Mora, J Capmany, A Loayssa, et al.. Novel technique for implementing incoherent microwave photonic filters with negative coefficients using phase modulator and single sideband selection[J]. IEEE Photon Technol Lett, 2006, 18(18): 1943-1944.

[20] T Y Kim, C K Oh, S J Kim, et al.. Tunable photonic microwave notch filter with negative coefficient based on polarization modulation[J]. IEEE Photon Technol Lett, 2007, 19(12): 907-909.

[21] T Tanemura, Y Takushima, K Kikuchi. Narrowband optical filter with a variable transmission spectrum using stimulated Brillouin scattering in optical fiber[J]. Opt Lett, 2002, 27(17): 1552-1554.

[22] B Vidal, M A Piqueras, J Marti. Tunable and reconfigurable photonic microwave filter based on stimulated Brillouin scattering[J]. Opt Lett, 2007, 32(1): 23-25.

[23] 朱海玲, 潘炜, 陈吉欣, 等. 基于单通带微波光子滤波的多倍频微波信号产生[J]. 中国激光, 2013, 40(1): 0105003.

    Zhu Hailing, Pan Wei, Chen Jixin, et al.. Frequency multiplied microwave signal generation based on single passband microwave photonic filtering[J]. Chinese J Lasers, 2013, 40(1): 0105003.

[24] 韩丙辰, 于晋龙, 王文睿, 等. 基于分布反馈注入锁定的连续可调光子微波倍频实验研究[J]. 中国激光, 2012, 39(12): 1205004.

    Han Bingchen, Yu Jinlong, Wang Wenrui, et al.. Experimental study of continously tunable photonic microwave frequency multipliaction based on distributed feedback injection locking[J]. Chinese J Lasers, 2012, 39(12): 1205004.

[25] Q Wang, F Zeng, S Blais, et al.. Optical UWB monocycle pulse generation based on cross-gain modulation in semiconductor optical amplifier[J]. Opt Lett, 2006, 31(21): 3083-3085.

[26] J Dong, X Zhang, J Xu, et al.. Ultrawideband monocycle generation using cross-gain modulation in semiconductor optical amplifier[J]. Opt Lett, 2007, 32(10): 1223-1225.

[27] J Dong, X Zhang, J Xu, et al.. All-optical ultrawideband monocycle generation utilizing gain saturation of a dark return-to-zero signal in a semiconductor optical amplifier[J]. Opt Lett, 2007, 32(15): 2158-2160.

[28] M Muriel, J Azana, A Carballar. Real-time Fourier transformer based on fiber gratings[J]. Opt Lett, 1999, 24(1): 1-3.

[29] J Chou, Y Han, Babram Jalali. Adaptive RF-photonic arbitrary waveform generator[J]. IEEE Photon Technol Lett, 2003, 15(4): 581-583.

[30] L S Lin, J D Mekinney, A M Weiner. Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wideband communication[J]. IEEE Microw Wireless Compon Lett, 2005, 15(4): 226-228.

[31] C Wang, F Zeng, J P Yao. All-fiber ultrawideband pulse generation based on spectral shaping and dispersion-induced frequency-to-time conversion[J]. IEEE Photon Technol Lett, 2007, 19(3): 137-139.

[32] M Abtahi, M Mirshafiei, J Magne, et al.. Ultra-widehand waveform generator based on optical pulse-shaping and FBG tuning[J]. IEEE Photon Techol Lett, 2008, 20(2): 135-137.

[33] 郭精忠, 于晋龙, 刘毅, 等. 基于注入锁定法布里珀罗型激光二极管的超带宽信号产生技术[J]. 中国激光, 2012, 39(6): 0605006.

    Guo Jingzhong, Yu Jinlong, Liu Yi, et al.. Ultrawideband signal generation based on injection locking of Fabry-Perot laser diode[J]. Chinese J Lasers, 2012, 39(6): 0605006.

[34] F Zeng, J P Yao. An approach to ultrawideband pulse generation and distribution over optical fiber[J]. IEEE Photon Techol Lett, 2006, 18(7): 823-825.

[35] F Zeng, J P Yao. Ultrawideband signal generation using a high-speed electrooptic phase modulator and a fiber-Bragg-grating-based frequency discriminator[J]. IEEE Photon Techol Lett, 2006, 18(19): 2062-2064.

[36] G Qi, J P Yao, J Seregelyi, et al.. Optical generation and distribution of continuously tunable millimeter-wave signals using an optical phase modulator[J]. J Lightwave Technol, 2005, 23(9): 2687-2695.

[37] 文鸿, 陈林, 皮雅稚, 等. 基于相位调制器产生光毫米波的全双工光纤无线通信系统[J]. 中国激光, 2007, 34(7): 935-939.

    Wen Hong, Chen Lin, Pi Yazhi, et al.. Full-duplex radio-over-fiber system with optical millimeter-wave generation utilizing optical phase modulator[J]. Chinese J Lasers, 2007, 34(7): 935-939.

[38] H Ou, B Chen, H Fu, K Zhu, et al.. Microwave-photonic frequency doubling utilizing phase modulator and fiber Bragg gratings[J]. Electron Lett, 2008, 44(2): 131-132.

[39] G Maury, A Hilt, T Berceli, et al.. Microwave-frequency conversion methods by optical interferometer and photodiode[J]. IEEE Trans Microw Tech, 1997, 45(8): 1481-1485.

[40] D Uttamchandani, H S Al-Raweshidy. Integrated optical mixer for RF applications[J]. Electron Lett, 1991, 27(1): 70-71.

[41] J P Yao, G Maury, Y L Guennec, et al.. All-optical subcarrier frequency conversion using an electrooptic phase modulator[J]. IEEE Photon Technol Lett, 2005, 17(11): 2427-2429.

[42] L V T Nguyen, D B Hunter. A photonic technique for microwave frequency measurement[J]. IEEE Photon Technol Lett, 2006, 18(5): 1188-1190.

[43] X Zou, J P Yao. An optical approach to microwave frequency measurement with adjustable measurement range and resolution[J]. IEEE Photon Technol Lett, 2008, 20(12): 1989-1991.

[44] H Chi, X Zou, J P Yao. An approach to the measurement of microwave frequency based on optical power monitoring[J]. IEEE Photon Technol Lett, 2008, 20(7): 1249-1251.

[45] X Zou, H Chi, J P Yao. Microwave frequency measurement based on optical power monitoring using a complementary optical filter pair[J]. IEEE Trans Microw Theory Tech, 2009, 57(2): 505-511.

[46] N Sarkhosh, H Emami, L Bui, et al.. Reduced cost photonic instantaneous frequency measurement system[J]. IEEE Photon Technol Lett, 2008, 20(7): 1521-1523.

[47] H Emami, N Sarkhosh, L Bui, et al.. Amplitude independent RF instantaneous frequency measurement system using photonic Hilbert transform[J]. Opt Express, 16(18): 13707-13712.

[48] X Zhang, H Chi, S Zheng, et al.. Instantaneous microwave frequency measurement using an optical phase modulator[J]. IEEE Microw Compon Lett, 2009, 19(6): 422-424.

[49] 王欢, 武向农, 张静, 等. 相位调制的瞬时微波频率测量的Optisystem仿真研究[J]. 激光与光电子学进展, 2013, 50(1): 011202.

    Wang Huan, Wu Xiangnong, Zhang Jing, et al.. Simulation of phase modulated instaneous frequency measurement on Optisystem[J]. Laser & Optoelectronics Progress, 2013, 50(1): 011202.

魏朝林, 胡姝玲, 王鑫龙, 邵洪峰. 相位调制到强度调制转换技术的研究动态[J]. 激光与光电子学进展, 2013, 50(11): 110003. Wei Zhaolin, Hu Shuling, Wang Xinlong, Shao Hongfeng. Development of Research on Phase Modulation to Intensity Modulation Conversion[J]. Laser & Optoelectronics Progress, 2013, 50(11): 110003.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!