光学技术, 2023, 49 (6): 680, 网络出版: 2023-12-05  

基于解耦训练的脉冲星识别算法

Pulsar recognition algorithm based on decoupling training
作者单位
1 北京师范大学 人工智能学院, 北京 100875
2 济南大学 信息科学与技术学院, 山东 济南 250002
摘要
为了解决脉冲星识别研究局限在常规分类算法的视野中而缺乏针对性的问题, 文章针对脉冲星数据集的特点, 挖掘其内在特征与其他研究领域的关联性, 发现了脉冲星数据与长尾分布之间存在的联系, 探求脉冲星数据与长尾分布的特征一致性, 首次将脉冲星数据分布看作长尾分布的一种特例。并从长尾视觉识别视角中的优化训练策略角度出发, 提出了一种基于解耦训练策略的脉冲星识别算法。算法采用解耦训练策略, 在操作上简捷高效, 具备更强的可移植性。经过数据集的验证, 算法能有效改善决策边界, 在HTRU_bands和HTRU_ints数据集的召回率相较于对比方法分别提升了11.8%和13%, 是一种性价比较高的有效识别算法。
Abstract
In order to solve the problem that the pulsar recognition research is limited to the field of conventional classification algorithm, the research ideas are mainly divided into two categories: data adaptation model and model adaptation data, and the lack of pertinence is the problem, to study the characteristics of the pulsar dataset, excavates the correlation between its intrinsic characteristics and other research fields, and finds that there is a connection between pulsar data and long-tail distribution. Aiming at the limitations of the field of pulsar data identification, combined with the characteristics of pulsar data itself, in this study. The consistency of pulsar data with the long-tail distribution is explored, and for the first time, the pulsar data distribution is regarded as a special case of long-tail distribution. On this basis, from the perspective of optimized training strategy from the perspective of long-tail visual recognition, a pulsar recognition algorithm based on decoupling training strategy is proposed. The traditional algorithm in the field of pulsar recognition is mainly improved from the idea of optimizing the model and data, compared with the traditional algorithm, the algorithm proposed starts from the training point of view, adopts the decoupling training strategy, and is simple and efficient in operation, with stronger portability. The training process of the algorithm is divided into two stages, the first stage is the joint training of the overall pulsar recognition model, and the sampling strategy is sampling based on the balance of the instances; The second stage is to fix the feature extraction network on the basis of the first stage, and fine-tune the classifier. A variety of different fine-tuning strategies were used, including class balancing training on classifiers and normalization of features to find nearest neighbors. After the verification of multiple data sets, the individual fine-tuning of the classifier can effectively improve the decision-making boundary and improve the recall rate and other indicators, which is a cost-effective improvement method.
参考文献

[1] Hewish A, Bell S J, Pilkington J D H, et al. Observation of a rapidly pulsating radio source[M]∥A Source Book in Astronomy and Astrophysics, 1900-1975. Cambridge: Harvard University Press,2013:498-504.

[2] 张承民. 中国天眼科普:神秘的脉冲星[M]. 北京:清华大学出版社,2019.

[3] 帅平, 陈绍龙, 吴一帆, 等. X 射线脉冲星导航原理[J]. 宇航学报,2007(6):1538-1543.

[4] Hobbs G, Miller D, Manchester R N, et al. The parkes observatory pulsar data archive[J]. Publications of the Astronomical Society of Australia,2011,28(3):202-214.

[5] Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks[EB/OL].(2016-01-07)[2022-05-31].https:∥airxiv.org/abs/1511.06434.

[6] 刘晓飞, 劳保强, 安涛, 等. 基于深层残差网络的脉冲星候选体分类方法研究[J].天文学报,2021,62(2):98-111.

[7] 王元超, 郑建华, 潘之辰, 等. 脉冲星候选样本分类方法综述[J].深空探测学报,2018,5(3):203-211.

[8] 王洪丰. 基于机器学习的脉冲星搜寻方法研究[D].北京:北京师范大学,2020.

[9] Morello V, Barr E D, Bailes M, et al. SPINN: a straightforward machine learning solution to the pulsar candidate selection problem[J]. Monthly Notices of the Royal Astronomical Society,2014,443(2):1651-1662.

[10] Guo P, Duan F, Wang P, et al. Pulsar candidate classification using generative adversary networks[J]. Monthly Notices of the Royal Astronomical Society,2019,490(4):5424-5439.

[11] Boyan Zhou, Quan Cui, Xinshen Wei, et al. BBN: Bilateral-branch network with cumulative learning for long-tailed visual recognition[C]∥IEEE Conference on Computer Vision and Pattem Recogition,2020.

[12] Chang C C, Lin C J. LIBSVM: a library for support vector machines[J]. ACM transactions on intelligent systems and technology (TIST),2011,2(3):1-27.

[13] Shlens J. A tutorial on principal component analysis[EB/OL].(2014-03-03)[2022-05-31].https:∥arxiv.org/abs/1404.1100.

[14] Chang C C, Lin C J. LIBSVM: a library for support vector machines[J]. ACM transactions on intelligent systems and technology (TIST),2011,2(3):1-27.

尹乾, 车润琪, 杨如意, 郑新. 基于解耦训练的脉冲星识别算法[J]. 光学技术, 2023, 49(6): 680. YIN Qian, CHE Runqi, YANG Ruyi, ZHENG Xin. Pulsar recognition algorithm based on decoupling training[J]. Optical Technique, 2023, 49(6): 680.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!