发光学报, 2019, 40 (5): 643, 网络出版: 2019-06-10  

有机异质结连接层C60/CuPc电荷产生能力研究

Charge Generation Ability of C60/CuPc Organic Heterojunction Connector Layer
作者单位
1 天水师范学院 物理系, 甘肃 天水 741000
2 衡阳师范学院 物理与电子工程学院, 湖南 衡阳 421002
摘要
有机异质结连接层因其具有良好的透光性能、制备工艺和有机电致发光器件(Organic light-emitting diodes, OLEDs)完全兼容的优点, 被广泛应用于叠层OLEDs中。在叠层OLEDs中, 连接层可产生电荷, 其工作性能是影响叠层OLEDs性能的关键因素之一。为了获得最佳性能的有机异质结连接层, 本文制备了结构为glass/ITO/tris(8-hydroxyquinoline) aluminum(Alq3)(60 nm)/C60(x nm)/CuPc(y nm)/N,N′-bis(naphthalen-1-yl)-N,N′-bis (phenyl)-be-nzidine(NPB) (40 nm)/Al (100 nm)的有机器件, 直接获得了有机异质结连接层C60/CuPc产生的器件电流。通过结构优化发现, 结构为C60(30 nm)/CuPc(10 nm)的连接层具有最强的电荷产生能力, 并对最优结构连接层形成的物理机制作了合理的解释. 本文获得的结果可为理解有机异质结连接层工作机理以及制备高性能叠层OLEDs提供理论基础。
Abstract
Organic heterojunction connector(OHC) layers were widely used in tandem organic light emitting diodes(OLEDs) for their good light transmittance and technological compatibility with OLEDs. In a tandem OLED, the OHC layers, serving as the charge generation layer, played an important role in tandem OLEDs to function efficiently. In order to obtain the OHC layers with best performance, the devices with the structure of glass/ITO/tris(8-hydroxyquinoline) aluminum (Alq3)(60 nm)/C60(x nm)/CuPc(y nm)/N,N′-bis(naphthalen-1-yl)-N,N′-bis(phenyl)-be-nzidine (NPB)(40 nm)/Al(100 nm) were fabricated. The current density-voltage characteristic of the fabricated devices revealed that the OHC layer with the structure of C60/CuPc can generate charge carriers effectively, and show the largest charge carrier generation ability with the structure of C60(30 nm)/CuPc(10 nm). The forming physical mechanism of optimized OHC layer was reasonably explained. The results obtained in this paper can present an in-depth understanding of the working mechanism of tandem OLED and help ones fabricate high efficiency OLED.
参考文献

[1] REINEKE S,LINDNER F,SCHWARTZ G,et al.. White organic light-emitting diodes with fluorescent tube efficiency [J]. Nature, 2009,459(7244):234-238.

[2] LIN T A,CHATTERJEE T,TSAI W L,et al.. Sky-blue organic light emitting diode with 37% external quantum efficiency using thermally activated delayed fluorescence from spiroacridine-triazine hybrid [J]. Adv. Mater., 2016,28(32):6976-6983.

[3] XU R P,LI Y Q,TANG J X. Recent advances in flexible organic light-emitting diodes [J]. J. Mater. Chem. C, 2016,4(39):9116-9142.

[4] KITAMOTO Y,NAMIKAWA T,SUZUKI T,et al.. Dimesitylarylborane-based luminescent emitters exhibiting highly-efficient thermally activated delayed fluorescence for organic light-emitting diodes [J]. Org. Electron., 2016,34:208-217.

[5] VAN SLYKE S A,CHEN C H,TANG C W. Organic electroluminescent devices with improved stability [J]. Appl. Phys. Lett., 1996,69(15):2160-2162.

[6] MLADENOVSKI S,NEYTS K,PAVICIC D,et al.. Exceptionally efficient organic light emitting devices using high refractive index substrates [J]. Opt. Express, 2009,17(9):7562-7570.

[7] SMITH L H,WASEY J A E,BARNES W L. Light outcoupling efficiency of top-emitting organic light-emitting diodes [J]. Appl. Phys. Lett., 2004,84(16):2986-2988.

[8] WANG Q,DENG Z Q,CHEN J S,et al.. Realization of blue,green,and white inverted microcavity top-emitting organic light-emitting devices based on the same emitting layer [J]. Opt. Lett., 2010,35(4):462-464.

[9] WANG Q,DENG Z Q,MA D G. Highly efficient inverted top-emitting organic light-emitting diodes using a lead monoxide electron injection layer [J]. Opt. Express, 2009,17(20):17269-17278.

[10] DODABALAPUR A,ROTHBERG L J,JORDAN R H,et al.. Physics and applications of organic microcavity light emitting diodes [J]. J. Appl. Phys., 1996,80(12):6954-6964.

[11] MLLER S,FORREST S R. Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays [J]. J. Appl. Phys., 2002,91(5):3324-3327.

[12] SUN Y R,FORREST S R. Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids [J]. Nat. Photon., 2008,2(8):483-487.

[13] KIM Y C,CHO S H,SONG Y W,et al.. Planarized SiNx/spin-on-glass photonic crystal organic light-emitting diodes [J]. Appl. Phys. Lett., 2006,89(17):173502-1-3.

[14] KIDO J,MATSUMOTO T,NAKADA T,et al.. 27.1:Invited paper:high efficiency organic EL devices having charge generation layers [J]. SID Soc. Inf. Display Int. Symp. Dig. Tech. Pap., 2003,34(1):964-965.

[15] CHANG C C,HWANG S W,CHEN C H,et al.. High-efficiency organic electroluminescent device with multiple emitting units [J]. Jpn. J. Appl. Phys., 2004,43(9A):6418-6421.

[16] KANNO H,HOLMES R J,SUN Y,et al.. White stacked electrophosphorescent organic light-emitting devices employing MoO3 as a charge-generation layer [J]. Adv. Mater., 2006,18(3):339-342.

[17] CHANG CC,CHEN J F,HWANG S W,et al.. Highly efficient white organic electroluminescent devices based on tandem architecture [J]. Appl. Phys. Lett., 2005,87(25):253501-1-3.

[18] CHO T Y,LIN C L,WU C C. Microcavity two-unit tandem organic light-emitting devices having a high efficiency [J]. Appl. Phys. Lett., 2006,88(11):111106-1-3.

[19] LIAO L S,KLUBEK K P,TANG C W. High-efficiency tandem organic light-emitting diodes [J]. Appl. Phys. Lett., 2004,84(2):167-169.

[20] LAW C W,LAU K M,FUNG M K,et al.. Effective organic-based connection unit for stacked organic light-emitting devices [J]. Appl. Phys. Lett., 2006,89(13):133511-1-3.

[21] GUO F W,MA D G. White organic light-emitting diodes based on tandem structures [J]. Appl. Phys. Lett., 2005,87(17):173510-1-3.

[22] KANG S J,YI Y,KIM C Y,et al.. Energy level diagrams of C60/pentacene/Au and pentacene/C60/Au [J]. Synth. Met., 2006,156(1):32-37.

[23] ZHANG H M,DAI Y F,MA D G. Al/WO3/Au as the interconnecting layer for efficient tandem white organic light-emitting diodes [J]. J. Phys. D:Appl. Phys., 2008,41(10):102006-1-4.

[24] SUN J X,ZHU X L,PENG H J,et al.. Effective intermediate layers for highly efficient stacked organic light-emitting devices [J]. Appl. Phys. Lett., 2005,87(9):093504-1-3.

[25] XIAO J,WANG X X,ZHU H,et al.. Efficiency enhancement utilizing hybrid charge generation layer in tandem organic light-emitting diodes [J]. Appl. Phys. Lett., 2012,101(1):013301-1-4.

[26] YANG J P,BAO Q Y,XIAO Y,et al.. Hybrid intermediate connector for tandem OLEDs with the combination of MoO3-based interlayer and p-type doping [J]. Org. Electron., 2012,13(11):2243-2249.

[27] WEN X M,YIN Y M,LI Y,et al.. Tandem white organic light-emitting device using non-modified Ag layer as cathode and interconnecting layer [J]. Org. Electron., 2014,15(3):675-679.

[28] SUN H D,GUO Q X,YANG D Z,et al.. High efficiency tandem organic light emitting diode using an organic heterojunction as the charge generation layer:an investigation into the charge generation model and device performance [J]. ACS Photon., 2015,2(2):271-279.

[29] GUO Q X,SUN H D,WANG J X,et al.. Charge generation mechanism of tandem organic light emitting diodes with pentacene/C70 organic heterojunction as the connecting layer [J]. J. Mater. Chem. C, 2016,4(2):376-382.

[30] ZHU X L. Electrode Investigation of Organic Light-emitting Diodes for Display Applications [D]. Hong Kong,China:Hong Kong University of Science and Technology, 2008.

[31] ZHOU Y C,LIU Z T,TANG J X,et al.. Substrate dependence of energy level alignment at the donor-acceptor interface in organic photovoltaic devices [J]. J. Electron Spectrosc. Relat. Phenom., 2009,174(1-3):35-39.

[32] CHEN Y H,MA D G. Organic semiconductor heterojunctions as charge generation layers and their application in tandem organic light-emitting diodes for high power efficiency [J]. J. Mater. Chem., 2012,22(36):18718-18734.

[33] CHEN Y H,CHEN J S,MA D G,et al.. High power efficiency tandem organic light-emitting diodes based on bulk heterojunction organic bipolar charge generation layer [J]. Appl. Phys. Lett., 2011,98(24):243309-1-3.

[34] CHEN Y H,CHEN J S,MA D G,et al.. Tandem white phosphorescent organic light-emitting diodes based on interface-modified C60/pentacene organic heterojunction as charge generation layer [J]. Appl. Phys. Lett., 2011,99(10):103304-1-3.

[35] CHU T Y,SONG O K. Hole mobility of N,N′-bis(naphthalen-1-yl)-N,N′-bis(phenyl) benzidine investigated by using space-charge-limited currents [J]. Appl. Phys. Lett., 2007,90(20):203512-1-3.

[36] LU F P,LIU X B,XING Y Z. Numerical study of the influence of applied voltage on the current balance factor of single layer organic light-emitting diodes [J]. J. Appl. Phys., 2014,115(16):164508-1-6.

[37] LU F P,PENG Y Q,XING Y Z. Numerical model of tandem organic light-emitting diodes based on a transition metal oxide interconnector layer [J]. J. Semicond., 2014,35(4):044005-1-9.

路飞平, 邓艳红, 师应龙, 赵玉祥, 刘晓斌, 张明霞. 有机异质结连接层C60/CuPc电荷产生能力研究[J]. 发光学报, 2019, 40(5): 643. LU Fei-ping, DENG Yan-hong, SHI Ying-long, ZHAO Yu-xiang, LIU Xiao-bin, ZHANG Ming-xia. Charge Generation Ability of C60/CuPc Organic Heterojunction Connector Layer[J]. Chinese Journal of Luminescence, 2019, 40(5): 643.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!