Photonics Research, 2017, 5 (6): 06000B54, Published Online: Dec. 7, 2017  

Kerr frequency combs in large-size, ultra-high-Q toroid microcavities with low repetition rates [Invited] Download: 629次

Author Affiliations
1 National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and School of Physics, Nanjing University 210093, China
2 Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701, USA
Copy Citation Text

Jiyang Ma, Xiaoshun Jiang, Min Xiao. Kerr frequency combs in large-size, ultra-high-Q toroid microcavities with low repetition rates [Invited][J]. Photonics Research, 2017, 5(6): 06000B54.

References

[1] T. Udem, R. Holzwarth, T. W. Hänsch. Optical frequency metrology. Nature, 2002, 416: 233-237.

[2] D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, S. T. Cundiff. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science, 2000, 288: 635-639.

[3] S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, D. J. Wineland. An optical clock based on a single trapped 199Hg+ ion. Science, 2001, 293: 825-828.

[4] R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, P. St.J. Russell. Optical frequency synthesizer for precision spectroscopy. Phys. Rev. Lett., 2000, 85: 2264-2267.

[5] S. A. Diddams, J. C. Bergquist, S. R. Jefferts, C. W. Oates. Standards of time and frequency at the outset of the 21st century. Science, 2004, 306: 1318-1324.

[6] T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, T. Udem. Laser frequency combs for astronomical observations. Science, 2008, 321: 1335-1337.

[7] T. J. Kippenberg, R. Holzwarth, S. A. Diddams. Microresonator-based optical frequency combs. Science, 2011, 332: 555-559.

[8] P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, T. J. Kippenberg. Optical frequency comb generation from a monolithic microresonator. Nature, 2007, 450: 1214-1217.

[9] A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, L. Maleki. Tunable optical frequency comb with a crystalline whispering gallery mode resonator. Phys. Rev. Lett., 2008, 101: 093902.

[10] I. S. Grudinin, N. Yu, L. Maleki. Generation of optical frequency combs with a CaF2 resonator. Opt. Lett., 2009, 34: 878-880.

[11] S. B. Papp, S. A. Diddams. Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb. Phys. Rev. A, 2011, 84: 053833.

[12] B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, M. Lonar. Diamond nonlinear photonics. Nat. Photonics, 2014, 8: 369-374.

[13] H. Jung, C. Xiong, K. Y. Fong, X. Zhang, H. X. Tang. Optical frequency comb generation from aluminum nitride microring resonator. Opt. Lett., 2013, 38: 2810-2813.

[14] T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, T. J. Kippenberg. Universal formation dynamics and noise of Kerr-frequency combs in microresonators. Nat. Photonics, 2012, 6: 480-487.

[15] M. A. Foster, J. S. Levy, O. Kuzucu, K. Saha, M. Lipson, A. L. Gaeta. Silicon-based monolithic optical frequency comb source. Opt. Express, 2011, 19: 14233-14239.

[16] Q. Lu, S. Liu, X. Wu, L. Liu, L. Xu. Stimulated Brillouin laser and frequency comb generation in high-Q microbubble resonators. Opt. Lett., 2016, 41: 1736-1739.

[17] J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, M. Lipson. CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects. Nat. Photonics, 2010, 4: 37-40.

[18] L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, D. J. Moss. CMOS-compatible integrated optical hyper-parametric oscillator. Nat. Photonics, 2010, 4: 41-45.

[19] F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Vargheses, A. M. Weiner. Spectral line-by-line pulse shaping of on-chip microresonator frequency combs. Nat. Photonics, 2011, 5: 770-776.

[20] J. Li, H. Lee, T. Chen, K. J. Vahala. Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs. Phys. Rev. Lett., 2012, 109: 233901.

[21] P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, T. J. Kippenberg. Octave spanning tunable frequency comb from a microresonator. Phys. Rev. Lett., 2011, 107: 063901.

[22] Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, A. L. Gaeta. Octave-spanning frequency comb generation in a silicon nitride chip. Opt. Lett., 2013, 36: 3398-3400.

[23] T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, T. J. Kippenberg. Temporal solitons in optical microresonators. Nat. Photonics, 2014, 8: 145-152.

[24] X. Yi, Q.-F. Yang, K. Y. Yang, M.-G. Suh, K. Vahala. Soliton frequency comb at microwave rates in a high-Q silica microresonator. Optica, 2015, 2: 1078-1085.

[25] A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, L. Maleki. Kerr combs with selectable central frequency. Nat. Photonics, 2011, 5: 293-296.

[26] S. Miller, K. Luke, Y. Okawachi, J. Cardenas, A. L. Gaeta, M. Lipson. On-chip frequency comb generation at visible wavelengths via simultaneous second- and third-order optical nonlinearities. Opt. Express, 2014, 22: 26517-26525.

[27] LeeS. H.OhD. Y.YangQ.-F.ShenB.WangH.YangK. Y.LaiY. H.YiX.VahalaK., “Towards visible soliton microcomb generation,” arXiv:1705. 06703v2 (2017).

[28] GuoX.ZouC.-L.JungH.GongZ.BruchA.JiangL.TangH. X., “Efficient visible frequency comb generation via Cherenkov radiation from a Kerr microcomb,” arXiv:1704. 04264v1 (2017).

[29] H. Jung, R. Stoll, X. Guo, D. Fischer, H. X. Tang. Green, red, and IR frequency comb line generation from single IR pump in AlN microring resonator. Optica, 2014, 1: 396-399.

[30] Y. Yang, X. Jiang, S. Kasumie, G. Zhao, L. Xu, J. M. Ward, L. Yang, S. N. Chormaic. Four-wave mixing parametric oscillation and frequency comb generation at visible wavelengths in a silica microbubble resonator. Opt. Lett., 2016, 41: 5266-5269.

[31] C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picque, T. J. Kippenberg. Mid-infrared optical frequency combs at 2.5  μm based on crystalline microresonators. Nat. Commun., 2013, 4: 1345.

[32] A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, M. Lipson. Silicon-chip mid-infrared frequency comb generation. Nat. Commun., 2015, 6: 6299.

[33] Y. K. Chembo, N. Yu. Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators. Phys. Rev. A, 2010, 82: 033801.

[34] C. Godey, I. V. Balakireva, A. Coillet, Y. K. Chembo. Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes. Phys. Rev. A, 2014, 89: 063814.

[35] S. B. Papp, K. Beha, P. Del’Haye, F. Quinlan, H. Lee, K. J. Vahala, S. A. Diddams. Microresonator frequency comb optical clock. Optica, 2014, 1: 10-14.

[36] P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, T. J. Kippenberg. Full stabilization of a microresonator-based optical frequency comb. Phys. Rev. Lett., 2008, 101: 053903.

[37] H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, K. J. Vahala. Chemically etched ultrahigh-Q wedge-resonator on a silicon chip. Nat. Photonics, 2012, 6: 369-373.

[38] D. K. Armani, T. J. Kippenberg, S. M. Spillane, K. J. Vahala. Ultra-high-Q toroid microcavity on a chip. Nature, 2003, 421: 925-928.

[39] T. Chen, H. Lee, K. Vahala. Thermal stress in silica-on-silicon disk resonators. Appl. Phys. Lett., 2013, 102: 031113.

[40] M. Oxborrow. Traceable 2D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators. IEEE Trans. Microwave Theory Tech., 2007, 55: 1209-1218.

[41] T. Carmon, L. Yang, K. J. Vahala. Dynamical thermal behavior and thermal self-stability of microcavities. Opt. Express, 2004, 12: 4742-4750.

Jiyang Ma, Xiaoshun Jiang, Min Xiao. Kerr frequency combs in large-size, ultra-high-Q toroid microcavities with low repetition rates [Invited][J]. Photonics Research, 2017, 5(6): 06000B54.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!