Chinese Optics Letters, 2015, 13 (1): 011402, Published Online: Jan. 6, 2015  

Effect of environmental media on ablation rate of stainless steel under femtosecond laser multiple raster scans Download: 767次

Author Affiliations
1 College of Material Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
2 Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, MO 65409, USA
3 Key laboratory of Interface Science and Engineering in Advanced Materials of Ministry of Education, Taiyuan 0300 24, China
Abstract
We investigate the influence of environmental media on ablation rate of AISI 443 stainless steel under femtosecond (fs) laser single raster scan and multiple raster scans in air, water, and methanol. Meanwhile, the development of ablation rate with the change of fs laser-induced surface morphology in the three environmental media is comparatively studied. The results show that environmental media as well as fs laser-induced morphology control the ablation rate with the increasing number of raster scans (N). Under single raster scanning (N = 1), the ablation rate is higher in liquid than in air due to the confinement of plasma, laser-induced shockwaves, and bubble-related mechanical forces. However, under multiple raster scans, the variation in ablation rate with the increase in N in these three environmental media is complicated and is largely determined by the surface morphology induced by previous fs laser ablation. When N > 20, the ablation rate is much higher in air than in liquids due to preferential ablation caused by the formation of nanostructures-textured mound-shaped microstructures in air. Besides, the redeposition of ejected ablated materials is also an important factor that affects the ablation depth.
References

[1] A. Y. Vorobyev and C. L. Guo, Laser Photon. Rev. 7, 385 (2013).

[2] A. Y. Vorobyev and C. L. Guo, Phys. Rev. B 72, 195422 (2005).

[3] S. Zhang, X. Hu, Y. Liao, F. He, C. Liu, and Y. Cheng, Chin. Opt. Lett. 11, 033101 (2013).

[4] B. Dusser, Z. Sagan, H. Soder, N. Faure, J.P. Colombier, M. Jourlin, and E. Audouard, Opt. Express 18, 2913 (2010).

[5] B. Wu, M. Zhou, and J. Li, Appl. Surf. Sci. 256, 61 (2009).

[6] F. Kong, Y. Jin, S. Liu, S. Chen, H. Guan, K. He, Y. Du, and H. He, Chin. Opt. Lett. 11, 102302 (2013).

[7] T. Y. Hwang, A. Y. Vorobyev, and C. L. Guo, Opt. Express A 19, 824 (2011).

[8] J. W. Yao, C. Y. Zhang, and H. Y. Liu, Appl. Surf. Sci. 258, 7625 (2012).

[9] T. L. Chang, Z. C. Chen, and Y. C. Lee, Opt. Express 20, 15997 (2012).

[10] E. V. Golosov, A. A. Ionin, Y. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, Y. N. Noboselov, L. V. Seleznev, and D. V. Sinitsyn, J. Exp. Theor. Phys. 14, 113 (2011).

[11] M. S. Ahsan and M. S. Lee, Opt. Eng. 51, 121815 (2012).

[12] C. Albu, A. Dinescu, M. Filipescu, M. Ulmeanu, and M. Zamfirescu, Appl. Surf. Sci. 278, 347 (2013).

[13] L. S. Jiao, E. Y. K. Ng, and H. Y. Zheng, Appl. Surf. Sci. 264, 52 (2013).

[14] X. Jia, Y. Yuan, D. Yang, T. Jia, and Z. Sun, Chin. Opt. Lett. 12, 113203 (2014).

[15] M. S. Ahsan, Y. G. Kim, and M. S. Lee, J. Laser Micro/Nanoeng. 7, 164 (2012).

[16] S. Bashir, M. S. Rafique, C. S. Nathala, and W. Husinsky, Appl. Surf. Sci. 290, 53 (2014).

[17] A. Y. Vorobyevand C. L. Guo, Appl. Surf. Sci. 253, 7272 (2007).

[18] T. Y. Hwangand C. L. Guo, J. Appl. Phys. 111, 083518 (2012).

[19] B. K. Nayak, M. C. Gupta, and K. W. Kolasinsk, Nanotechnology 182, 19530 (2007).

[20] C. A. Zuhlke, T. P. Anderson, and D. R. Alexander, Appl. Surf. Sci. 283, 648 (2013).

[21] B. K. Nayakand M. C. Gupta, Opt. Laser. Eng. 48, 966 (2010).

[22] M. Momcilovic, J. Limpouch, V. Kmetik, and R. Redaelli, Appl. Surf. Sci. 258, 8908 (2012).

[23] C. Wang, H. B. Huo, M. Johnson, and M. Y. Shen, Nanotechnology 21, 75304 (2010).

[24] G. D. Miyaji, K. Z. Miyazaki, K. F. Zhang, and T. K. Yoshifuji, Opt. Express 20, 14848 (2012).

[25] M. Y. Shen, C. H. Crouch, J. E. Carey, and E. Mazur, Appl. Phys. Lett. 23, 5694 (2004).

[26] Y. Ju, C. Liu, Y. Liao, Y. Liu, L. Zhang, Y. Shen, D. Chen, and Y. Cheng, Chin. Opt. Lett. 11, 072201 (2013).

[27] L. Jiang and H. L. Tsai, in Proceedings of NSF Workshop on Unsolved Problems and Research Needs in Thermal Aspects of Material Removal Processes (2003).

[28] M. E. Shasheen, J. E. Gagnon, and B. J. Fryer, J. Appl. Phys. 113, 213106 (2013).

[29] H. W. Liu, F. Chen, X. H. Wang, Q. Yang, H. Bian, J. H. Si, and X. Hou, Thin Solid Films 518, 5188 (2010).

[30] L. S. Jiao, E. Y. K. Ng, L. M. Wee, and H. Y. Zheng, Appl. Phys. A 104, 1081 (2011).

[31] G. Y. Mak, E. Y. Lam, and H. W. Choi, Appl. Phys. A 102, 441 (2011).

[32] L. S. Jiao, E. Y. K. Ng, L. M. Wee, and H. Y. Zheng, Phys. Proc. 19, 426 (2011).

[33] C. A. Zuhlke, T. P. Anderson, and D. R. Alexander, Opt. Express 21, 8460 (2013).

Zeqin Cui, YingqiLi, Wenxian Wang, Chenghsiang Lin, Bingshe Xu. Effect of environmental media on ablation rate of stainless steel under femtosecond laser multiple raster scans[J]. Chinese Optics Letters, 2015, 13(1): 011402.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!