激光与光电子学进展, 2017, 54 (6): 063002, 网络出版: 2017-06-08   

实用化微型近红外光谱分析仪的设计与性能测试 下载: 516次

Design and Performance Test of Practical Near Infrared Micro-Spectrometer
何文馨 1,2,*温志渝 1,2周颖 1,2
作者单位
1 重庆大学新型微纳器件与系统技术国防重点学科实验室, 重庆 400044
2 重庆大学微系统研究中心, 重庆 400044
摘要
近红外光谱分析作为石油勘探过程中油品成分鉴别的一种重要手段,多年来引起人们的广泛关注和深入研究。针对石油勘探过程中油藏井温度高、空间局促等苛刻环境条件,研制了一种能够在高温环境中连续稳定工作的实用化微型近红外光谱分析仪,其体积为154 mm×66.5 mm×38 mm。该微型近红外光谱分析仪采用凹面光栅作为分光元件,针对油气特征波段进行理论计算和Zemax软件仿真,设计出通量高、杂散光少、成像优质的全息凹面光栅。探测器选用Hamamatsu公司二级半导体制冷线阵电荷耦合器件(CCD),通过合理的光路设计和紧凑的结构布局,实现了在70 ℃的高温环境下稳定工作。通过标定及相关性能测试,结果表明:该微型近红外光谱分析仪光谱范围达到1550~1890 nm,分辨率优于4.8 nm,波长准确性±1.1 nm,信噪比1202∶1;利用该光谱分析仪对0#柴油和水的吸光度进行了应用实验,结果充分证明该系统的实用化水平。
Abstract
In recent years, near infrared (NIR) spectroscopic analysis has attracted wide attention and it has been researched deeply as an important method of the identification of oil components in the process of petroleum exploration. The environmental conditions in the process of petroleum exploration are severe because of high temperature and cramped space in reservoirs. In view of the above technical problems, this paper develops a practical NIR micro-spectrometer with the volume of 154 mm×66.5 mm×38 mm, which can continuously and stably work in high temperature condition. The NIR micro-spectrometer selects concave grating as splitting element. The holographic concave grating with high throughput, few stray light and high quality imaging is designed by theoretical calculation and Zemax software simulation for characteristic band of oil gas. The detector adopts two stage semiconductor refrigeration linear charge-coupled device (CCD) of Hamamatsu. Through reasonable optical design and compact structure layout, it can stably work in high temperature condition of 70 ℃. Then we calibrate and test performance of the spectrometer. The results show that spectral region of the NIR micro-spectrometer ranges from 1550 nm to 1890 nm, the resolution is better than 4.8 nm, the accuracy of wavelength is ±1.1 nm, and the signal-to-noise ratio is 1202∶1. Finally, we conduct the application experiment of absorbance for 0# diesel oil and water, which fully demonstrates the practical level of the system.
参考文献

[1] Zhou Q, Pang J, Ni K. A portable flat-field concave grating spectrometer with high resolution[C]. SPIE, 2014, 9271: 92711K.

[2] Murchie S, Arvidson R, Bedini P, et al. Compact reconnaissance imaging spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO)[J]. Journal of Geophysical Research Atmospheres, 2007, 112(E5): 431-433.

[3] Zimmer F, Grueger H, Heberer A, et al. Development of a NIR microspectrometer based on a MOEMS scanning grating[C]. SPIE, 2004, 5455: 9-18.

[4] 徐广通, 陆婉珍, 袁洪福. 近红外光谱法测定柴油中的芳烃含量[J]. 石油化工, 1999, 28(4): 263-265.

    Xu Guangtong, Lu Wanzhen, Yuan Hongfu. Determination of aromatic hydrocarbons in diesel by near-infrared spectroscopy[J]. Petrochemical Technology, 1999, 28(4): 263-265.

[5] 陈延平, 李纯彬, 王晓玲,等. 膝骨性关节炎的在体近红外光谱检测[J]. 光电子·激光, 2014(5): 1023-1026.

    Chen Yanping, Li Chunbin, Wang Xiaoling, et al. Detection of knee osteoarthritis with near infrared spectroscopy in vivo[J]. Journal of Optoelectronics·Laser, 2014(5): 1023-1026.

[6] Otto T, Saupe R, Bruch R. Principle and applications of a new MOEMS spectrometer[C]. SPIE, 2006, 6114: 77-86.

[7] Zhou Y, Wen Q, Wen Z, et al. Modeling of MOEMS electromagnetic scanning grating mirror for NIR micro-spectrometer[J]. Aip Advances, 2016, 6(2): 291-296.

[8] Kraft M, Kenda A, Frank A, et al. Single-detector micro-electro-mechanical scanning grating spectrometer[J]. Analytical and Bioanalytical Chemistry, 2006, 386(5): 1259-1266.

[9] 孔 笋, 沈 阳, 张小康, 等. 井下混合流体光谱在线分析技术研究[J]. 测井技术, 2015, 39(4): 405-408.

    Kong Sun, Shen Yang, Zhang Xiaokang, et al. On line spectrum analysis technology for downhole mixed fluid[J]. Wellogging Technology, 2015, 39(4): 405-408.

[10] 李全臣, 蒋月娟. 光谱仪器原理[M]. 北京: 北京理工大学出版社, 1999: 18-27.

    Li Quanchen, Jiang Yuejuan. The principle of spectrometer[M]. Beijing: Beijing Institute of Technology Press, 1999: 18-27.

[11] 唐 义, 郑 成, 南一冰, 等. 消像散型Czerny-Turner成像光谱仪图像变形校正研究[J]. 光学学报, 2015, 35(1): 0112007.

    Tang Yi, Zheng Cheng, Nan Yibing, et al. Study of anamorphose correction of astigmatism-corrected Czerny-Turner imaging spectrometer[J]. Acta Optica Sinica, 2015, 35(1): 0112007.

[12] 王保华, 阮宁娟, 郭崇岭,等. 机载轻小型高分辨率成像光谱仪光学系统设计[J]. 光学学报, 2015, 35(10): 1022001.

    Wang Baohua, Ruan Ningjuan, Guo Chongling, et al. Optical system design of airborne light and compact high resolution imaging spectrometer[J]. Acta Optica Sinica, 2015, 35(10): 1022001.

[13] 任 重, 刘国栋, 黄 振. 一种体相位全息透射式光栅的光谱仪分光系统[J]. 中国激光, 2015, 42(6): 0608004.

    Ren Zhong, Liu Guodong, Huang Zhen. Aspectrometer splitting-light system based on volume phase holographic transmission grating[J]. Chinese J Lasers, 2015, 42(6): 0608004.

[14] Namioka T, Seya M, Noda H. Design and performance of holographic concave gratings[J]. Japanese Journal of Applied Physics, 1976, 15(7): 2039-1197.

[15] 孔 鹏, 巴音贺希格, 李文昊, 等. 双光栅平场全息凹面光栅光谱仪的优化设计[J]. 光学学报, 2011, 31(2): 0205001.

    Kong Peng, Bayanheshig, Li Wenhao, et al. Optimization of double-grating flat-field holographic concave grating spectrograph[J]. Acta Optica Sinica, 2011, 31(2): 0205001.

[16] Noda H, Namioka T, Seya M. Geometric theory of the grating[J]. Journal of the Optical Society of America, 1974, 64(8): 1031-1036.

[17] George N, Matthews J W. Holographic diffraction gratings[J]. Applied Physics Letters, 1966, 9(5): 212-215.

[18] 祝绍箕. 衍射光栅[M]. 北京: 机械工业出版社, 1986: 351-355.

    Zhu Shaoji. Diffraction grating[M]. Beijing: Machinery Industry Press, 1986: 351-355.

何文馨, 温志渝, 周颖. 实用化微型近红外光谱分析仪的设计与性能测试[J]. 激光与光电子学进展, 2017, 54(6): 063002. He Wenxin, Wen Zhiyu, Zhou Ying. Design and Performance Test of Practical Near Infrared Micro-Spectrometer[J]. Laser & Optoelectronics Progress, 2017, 54(6): 063002.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!