光谱学与光谱分析, 2013, 33 (4): 1126, 网络出版: 2013-04-08  

网纹红土中铁矿物与粘土矿物赋存关系的X射线衍射证据

Occurrence Relationship between Iron Minerals and Clay Minerals in Net-Like Red Soils: Evidence from X-Ray Diffraction
作者单位
1 中国地质大学地球科学学院, 武汉 湖北 430074
2 中国地质大学珠宝学院, 武汉 湖北 430074
摘要
高纯度的粘土矿物样品是粘土矿物学重建古气候的关键, 然而, 土壤中的铁矿物(如针铁矿和赤铁矿等)和有机质的存在导致粘土矿物与非粘土矿物相互包裹, 使富集的粘土矿物样品常含有其他矿物杂质。 土壤沉积物中有机质去除的研究已较为充分, 但铁矿物在土壤沉积物中的赋存状态倍受争议, 制约了高纯度粘土矿物样品的制备。 该研究将以长江中下游九江网纹红土作为研究对象, 通过逐级分离试验对网纹红土中铁矿物与粘土矿物的赋存关系进行研究, 为土壤沉积物中铁矿物的去除提供一定的启示。 试验结果表明, 针铁矿和赤铁矿等铁矿物可能主要呈现被膜状吸附在羟基间层蒙脱石和伊利石的表面, 也有部分被高岭石吸附。
Abstract
The high purity of clay minerals is a key factor to reconstruct the palaeoclimate in clay mineralogy, however, the existence of iron minerals (such as goethite and hematite) and organics lead to the intergrowth of clay minerals and other minerals, producing other mineral impurities in enriched clay minerals. Although the removal of organics in soil sediments has been fully investigated, the occurrence state of iron minerals remains controversial, hindering the preparation of high-purity clay minerals. Therefore, the occurrence relationship of iron minerals and clay minerals in Jiujiang net-like red soils of the middle to lower reaches of the Yangtze River was investigated using the sequential separation method, which provided some implications for the removal of iron minerals in soil sediments. The results indicated that goethite and hematite were mostly absorbed on the surface of hydroxy-interlayered smectite and illite in the form of films, and the rest were absorbed by kaolinite.
参考文献

[1] XI Cheng-fan(席承藩). Quaternary Sciences(第四纪研究), 1990, 10(1): 82.

[2] Catt J A. Geoderma, 1991, 51(1-4): 167.

[3] Vogt T, Clauer N, Larqué P. Catena, 2010, 80(1): 53.

[4] Singer A. Earth Science Reviews, 1980, 15(4): 303.

[5] HONG Han-lie, XUE Hui-juan, ZHANG Ke-xin, et al(洪汉烈, 薛惠娟, 张克信, 等). Earth Science-Journal of China University of Geosiences(地球科学-中国地质大学学报), 2007(5): 598.

[6] YIN Ke, HONG Han-lie,LI Rong-biao, et al(殷科, 洪汉烈, 李荣彪, 等). Geoscience(现代地质), 2010(1): 187.

[7] YIN Ke, HONG Han-lie, LI Rong-biao, et al(殷科, 洪汉烈, 李荣彪, 等). Geological Science and Technology Information(地质科技情报), 2010(3): 41.

[8] Hong H, Churchman G J, Gu Y, et al. Geoderma, 2012, 173-174: 75.

[9] Hong H, Zhang K, Li Z. International Journal of Earth Sciences, 2009, 99(6): 1305.

[10] Hong H, Gu Y, Li R, et al. Journal of Quaternary Science, 2009, 25(5): 662.

[11] Wang L, Jiang B, Peng D, et al. Mining Science and Technology (China), 2011, 21(2): 141.

[12] LI Feng-quan, YE Wei, ZHU Li-dong, et al(李凤全, 叶玮, 朱丽东, 等). Acta Sedimentologica Sinica (沉积学报), 2010, (2): 346.

[13] YIN Ke, HONG Han-lie, LI Rong-biao, et al(殷科, 洪汉烈, 李荣彪, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2012, 32(10): 2765.

[14] WANG Zhi-bing, WANG Ren, ZHENG Yun, et al(王志兵, 汪稔, 郑郧, 等). Science of Soil and Water Conservation(中国水土保持科学), 2010, 8(6): 27.

[15] Goldberg S. Communications in Soil Science and Plant Analysis, 1989, 20(11-12): 1181.

[16] Kidder G, Reed L W. Clays and Clay Minerals, 1972, 20: 13.

[17] Vingiani S, Righi D, Petit S, et al. Clays and Clay Minerals, 2004, 52(4): 473.

[18] ZHANG Nai-xian, LI You-qin, ZHAO Hui-min, et al(张乃娴, 李幼琴, 赵慧敏, 等). Beijing: Science Press(北京: 科学出版社), 1990.

殷科, 洪汉烈, 韩文, 马遇伯, 李荣彪. 网纹红土中铁矿物与粘土矿物赋存关系的X射线衍射证据[J]. 光谱学与光谱分析, 2013, 33(4): 1126. YIN Ke, HONG Han-lie, HAN Wen, MA Yu-bo, LI Rong-biao. Occurrence Relationship between Iron Minerals and Clay Minerals in Net-Like Red Soils: Evidence from X-Ray Diffraction[J]. Spectroscopy and Spectral Analysis, 2013, 33(4): 1126.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!