Photonics Research, 2015, 3 (2): 020000A1, Published Online: Jan. 6, 2016  

Sign of differential reflection and transmission in pump-probe spectroscopy of graphene on dielectric substrate Download: 1124次

Author Affiliations
1 The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Teda Applied Physics Institute and School of Physics, Nankai University, Tianjin 300457, China
2 College of Science, Tianjin Polytechnic University, Tianjin 300387, China
3 The Key Laboratory of Functional Polymer Materials and Center for Nanoscale Science & Technology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
Abstract
Pump-probe differential reflection and transmission spectroscopy is a very effective tool to study the nonequili-brium carrier dynamics of graphene. The reported sign of differential reflection from graphene is not explicitly explained and not consistent. Here, we study the differential reflection and transmission signals of graphene on a dielectric substrate. The results reveal the sign of differential reflection changes with the incident direction of the probe beam with respect to the substrate. The obtained theory can be applied to predict the differential signals of other two-dimensional materials placed on various dielectric substrates.
References

[1] S. F. Shi, T. T. Tang, B. Zeng, L. Ju, Q. Zhou, A. Zettl, and F. Wang, “Controlling graphene ultrafast hot carrier response from metal-like to semiconductor-like by electrostatic gating,” Nano Lett. 14, 1578–1582 (2014).

[2] D. Brida, A. Tomadin, C. Manzoni, Y. J. Kim, A. Lombardo, S. Milana, R. R. Nair, K. S. Novoselov, A. C. Ferrari, G. Cerullo, and M. Polini, “Ultrafast collinear scattering and carrier multi-plication in graphene,” Nat. Commun. 4, 1987 (2013).

[3] M. Breusing, S. Kuehn, T. Winzer, E. Malic, F. Milde, N. Severin, J. P. Rabe, C. Ropers, A. Knorr, and T. Elsaesser, “Ultrafast non-equilibrium carrier dynamics in a single graphene layer,” Phys. Rev. B 83, 153410 (2011).

[4] I. Gierz, J. C. Petersen, M. Mitrano, C. Cacho, I. C. E. Turcu, E. Springate, A. St.hr, A. K.hler, U. Starke, and A. Cavalleri, “Snapshots of non-equilibrium Dirac carrier distributions in graphene,” Nat. Mater. 12, 1119–1124 (2013).

[5] K. J. Tielrooij, J. C. W. Song, S. A. Jensen, A. Centeno, A. Pesquera, A. Zurutuza Elorza, M. Bonn, L. S. Levitov, and F. H. L. Koppens, “Photoexcitation cascade and multiple hot-carrier generation in graphene,” Nat. Phys. 9, 248–252 (2013).

[6] A. Tomadin, D. Brida, G. Cerullo, A. C. Ferrari, and M. Polini, “Nonequilibrium dynamics of photoexcited electrons in gra-phene: collinear scattering, Auger processes, and the impact of screening,” Phys. Rev. B 88, 035430 (2013).

[7] S. Ulstrup, J. C. Johannsen, F. Cilento, J. A. Miwa, A. Crepaldi, M. Zacchigna, C. Cacho, R. Chapman, E. Springate, S. Mammadov, F. Fromm, C. Raidel, T. Seyller, F. Parmigiani, M. Grioni, P. D. C. King, and P. Hofmann, “Ultrafast dynamics of massive Dirac fer-mions in bilayer graphene,” Phys. Rev. Lett. 112, 257401 (2014).

[8] K. Chen, H. Li, L.-P. Ma, W. Ren, T.-F. Chung, H.-M. Cheng, Y. P. Chen, and T. Lai, “Diversity of ultrafast hot-carrier-induced dy-namics and striking sub-femtosecond hot-carrier scattering times in graphene,” Carbon 72, 402–409 (2014).

[9] K. Chen, H. Li, L.-P. Ma, W. Ren, J.-Y. Zhou, H.-M. Cheng, and T. Lai, “Ultrafast linear dichroism-like absorption dynamics in Gao et al. graphene grown by chemical vapor deposition,” J. Appl. Phys. 115, 203701 (2014).

[10] B. Gao, G. Hartland, T. Fang, M. Kelly, D. Jena, H. L. Xing, and L. B. Huang, “Studies of intrinsic hot phonon dynamics in suspended graphene by transient absorption microscopy,” Nano Lett. 11, 3184–3189 (2011).

[11] L. B. Huang, B. Gao, G. Hartland, M. Kelly, and H. L. Xing, “Ultrafast relaxation of hot optical phonons in monolayer and multilayer graphene on different substrates,” Surf. Sci. 605, 1657–1661 (2011).

[12] M. M. Leandro, M. Kin Fai, A. H. C. Neto, N. M. R. Peres, and F. H. Tony, “Observation of intra-and inter-band transitions in the transient optical response of graphene,” New J. Phys. 15, 015009 (2013).

[13] T. Li, L. Luo, M. Hupalo, J. Zhang, M. C. Tringides, J. Schmalian, and J. Wang, “Femtosecond population inversion and stimulated emission of dense Dirac fermions in graphene,” Phys. Rev. Lett. 108, 167401 (2012).

[14] R. W. Newson, J. Dean, B. Schmidt, and H. M. van Driel, “Ultra-fast carrier kinetics in exfoliated graphene and thin graphite films,” Opt. Express 17, 2326–2333 (2009).

[15] B. A. Ruzicka, S. Wang, J. W. Liu, K. P. Loh, J. Z. Wu, and H. Zhao, “Spatially resolved pump-probe study of single-layer graphene produced by chemical vapor deposition [Invited],” Opt. Mater. Express 2, 708–716 (2012).

[16] J. Shang, S. Yan, C. Cong, H.-S. Tan, T. Yu, and G. G. Gurzadyan, “Probing near Dirac point electron–phonon interaction in gra-phene,” Opt. Mater. Express 2, 1713–1722 (2012).

[17] J. Z. Shang, Z. Q. Luo, C. X. Cong, J. Y. Lin, T. Yu, and G. G. Gurzadyan, “Femtosecond UV-pump/visible-probe measure-ments of carrier dynamics in stacked graphene films,” Appl. Phys. Lett. 97, 163103 (2010).

[18] J. Z. Shang, T. Yu, J. Y. Lin, and G. G. Gurzadyan, “Ultrafast elec-tron-optical phonon scattering and quasiparticle lifetime in CVD-grown graphene,” ACS Nano 5, 3278–3283 (2011).

[19] X.-Q. Yan, J. Yao, Z.-B. Liu, X. Zhao, X.-D. Chen, C. Gao, W. Xin, Y. Chen, and J.-G. Tian, “Evolution of anisotropic-to-isotropic photoexcited carrier distribution in graphene,” Phys. Rev. B 90, 134308 (2014).

[20] F. Kadi, T. Winzer, E. Malic, A. Knorr, F. G.ttfert, M. Mittendorff, S. Winnerl, and M. Helm, “Microscopic description of intraband absorption in graphene: the occurrence of transient negative differential transmission,” Phys. Rev. Lett. 113, 035502 (2014).

[21] H. Yang, X. Feng, Q. Wang, H. Huang, W. Chen, A. T. S. Wee, and W. Ji, “Giant two-photon absorption in bilayer graphene,” Nano Lett. 11, 2622–2627 (2011).

[22] H. Zhang, D. Tang, L. Zhao, Q. Bao, and K. Loh, “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene,” Opt. Express 17, 17630–17635 (2009).

[23] B. Y. Sun and M. W. Wu, “Negative differential transmission in graphene,” Phys. Rev. B 88, 235422 (2013).

[24] P. A. George, J. Strait, J. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Ultrafast optical-pump terahertz-probe spectroscopy of the carrier relaxation and recombination dynamics in epitaxial graphene,” Nano Lett. 8, 4248–4251 (2008).

[25] D. Svintsov, V. Ryzhii, A. Satou, T. Otsuji, and V. Vyurkov, “Carrier-carrier scattering and negative dynamic conductivity in pumped graphene,” Opt. Express 22, 19873–19886 (2014).

[26] K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the optical conductivity of graphene,” Phys. Rev. Lett. 101, 196405 (2008).

[27] J. W. Weber, V. E. Calado, and M. C. M. van de Sanden, “Optical constants of graphene measured by spectroscopic ellipsome-try,” Appl. Phys. Lett. 97, 091904 (2010).

[28] X. Wang, M. Zhao, and D. D. Nolte, “Optical contrast and clarity of graphene on an arbitrary substrate,” Appl. Phys. Lett. 95, 081102 (2009).

[29] M. Born and E. Wolf, Principles of Optics (Cambridge Univer-sity, 1999).

[30] M. Bruna and S. Borini, “Optical constants of graphene layers in the visible range,” Appl. Phys. Lett. 94, 031901 (2009).

[31] F. J. Nelson, V. K. Kamineni, T. Zhang, E. S. Comfort, J. U. Lee, and A. C. Diebold, “Optical properties of large-area polycrystalline chemical vapor deposited graphene by spectro-scopic ellipsometry,” Appl. Phys. Lett. 97, 253110 (2010).

[32] Q. Ye, J. Wang, Z. Liu, Z.-C. Deng, X.-T. Kong, F. Xing, X.-D. Chen, W.-Y. Zhou, C.-P. Zhang, and J.-G. Tian, “Polarization-dependent optical absorption of graphene under total internal reflection,” Appl. Phys. Lett. 102, 021912 (2013)

[33] V. G. Kravets, A. N. Grigorenko, R. R. Nair, P. Blake, S. Anissimova, K. S. Novoselov, and A. K. Geim, “Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption,” Phys. Rev. B 81, 155413 (2010).

[34] “Fabry–Perot. interferometer,” http://en.wikipedia.org/wiki/Fabry%E2%80%93P%C3%A9rot_interferometer.

[35] “Coherence length,” http://en.wikipedia.org/wiki/Coherence_length.

[36] Q. Cui, F. Ceballos, N. Kumar, and H. Zhao, “Transient absorptionmicroscopy of monolayer and bulk WSe2,” ACS Nano 8,2970–2976 (2014).

[37] N. Kumar, J. He, D. He, Y. Wang, and H. Zhao, “Valley and spindynamics in MoSe2 two-dimensional crystals,” Nanoscale 6,12690–12695 (2014).

[38] R. Wang, B. A. Ruzicka, N. Kumar, M. Z. Bellus, H.-Y. Chiu, and H. Zhao, “Ultrafast and spatially resolved studies of charge car-riers in atomically thin molybdenum disulfide,” Phys. Rev. B 86, 045406 (2012).

Chengmin Gao, Xin Zhao, Jun Yao, Xiao-Qing Yan, Xiang-Tian Kong, Yongsheng Chen, Zhi-Bo Liu, Jian-Guo Tian. Sign of differential reflection and transmission in pump-probe spectroscopy of graphene on dielectric substrate[J]. Photonics Research, 2015, 3(2): 020000A1.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!