中国激光, 2014, 41 (9): 0903007, 网络出版: 2014-08-15   

皮秒激光制备大面积荷叶结构及其硅橡胶超疏水性压印研究 下载: 553次

Picosecond Laser Fabrication of Large-Area Surface Micro-Nano Lotus-Leaf Structures and Replication of Superhydrophobic Silicone Rubber Surfaces
作者单位
清华大学材料学院激光材料加工研究中心先进成形制造教育部重点实验室, 北京 100084
摘要
超疏水自清洁荷叶结构表面有重要应用潜力。运用高功率皮秒激光结合高速扫描振镜,在H13模具钢表面高效制备了密排六方点阵微米级凹坑,其中含有丰富的纳米级亚结构,获得了面积为25 mm×25 mm的反荷叶结构。将该结构用于超疏水微纳米压印模板,在165 ℃、6 MPa、大气环境中进行硅橡胶压印,获得大面积微米级突起阵列,表面分布着纳米级亚结构,与荷叶结构十分相似。压印后硅橡胶表面接触角达到153.3°,接触角滞后值为3.2°,实现了超疏水性。皮秒激光制备的模板能进行连续压印,具有一定的耐久性和连续压印能力。
Abstract
The self-cleaning lotus-leaf-like superhydrophobic surfaces are of great importance for various potential applications. Micro craters in hexagonal matrix with nano substructures are effectively fabricated on mold steel (H13) with an area of 25 mm×25 mm by means of a high-power picosecond laser in cooperated with a high-speed galvo scanner. This kind of micro-nano structured H13 surface is used as a micro-nano imprinting master for replicating superhydrophobic silicone rubber surfaces under 165 ℃, 6 MPa in ambient air. Micro protuberances decorated by nano substructures, similar to those of lotus leaf, are formed onto the printed surfaces of silicone rubber, transforming the rubber surfaces to be superhydrophobic with a contact angle of 153.3° and a contact angle hysteresis of 3.2°. The picosecond laser fabricated micro-nano template is capable for repeated imprinting with good durability.
参考文献

[1] W Barthlott, C Neinhuis. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta, 1997, 202(1): 1-8.

[2] 江雷. 从自然到仿生的超疏水纳米界面材料[J]. 化工进展, 2003, 22(12): 1258-1264.

    Jiang Lei. Nanostructured materials with superhydrophobic surfaces—from nature to biomimesis[J]. Chemical Industry and Engineering Progress, 2003, 22(12): 1258-1264.

[3] 汤勇, 周明, 韩志武, 等. 表面功能结构制造研究进展[J]. 机械工程学报, 2010, 46(23): 93-105.

    Tang Yong, Zhou Ming, Han Zhiwu, et al.. Recent research on manufacturing technologies of functional surface structure[J]. Journal of Mechanical Engineering, 2010, 46(23): 93-105.

[4] P Roach, N J Shirtcliffe, M I Newton. Progess in superhydrophobic surface development[J]. Soft Matter, 2008, 4(2): 224-240.

[5] Y Y Yan, N Gao, W Barthlott. Mimicking natural superhydrophobic surfaces and grasping the wetting process: A review on recent progress in preparing superhydrophobic surfaces[J]. Adv Colloid Interfac, 2011, 169(2): 80-105.

[6] 徐文骥, 宋金龙, 孙晶, 等. 金属基体超疏水表面制备及应用的研究进展[J]. 材料工程, 2011, (5): 93-98.

    Xu Wenji, Song Jinlong, Sun Jing, et al.. Progress in fabrication and application of superhydrophobic surfaces on metal substrates[J]. Journal of Materials Engineering, 2011, (5): 93-98.

[7] 徐先锋, 刘烁, 洪龙龙. 非金属超疏水材料的制备方法及研究进展[J]. 中国塑料, 2013, 27(5): 12-18.

    Xu Xianfeng, Liu Shuo, Hong Longlong. Preparation and developments of non-metal superhydrophobic materials[J]. China Plastics, 2013, 27(5): 12-18.

[8] 周明, 郑傲然, 杨加宏. 复制模塑法制备超疏水表面及其应用[J]. 物理化学学报, 2007, 23(8): 1296-1300.

    Zhou Ming, Zheng Aoran, Yang Jiahong. Superhydrophobic surfaces fabricated byreplica molding and its applications[J]. Acta Physico-Chimica Sinica, 2007, 23(8): 1296-1300.

[9] M Manca, A Cannavale, L De Marco, et al.. Durable superhydrophobic and antireflective surfaces by trimethylsilanized silica nanoparticles-based sol-gel processing[J]. Langmuir, 2009, 25(11): 6357-6362.

[10] H Tavana, A Amirfazli, A W Neumann. Fabrication of superhydrophobic surfaces of n-hexatriacontane[J]. Langmuir, 2006, 22(13): 5556-5559.

[11] H Li, X Wang, Y Song, et al.. Super-amphiphobic aligned carbon nanotube films[J]. Angew Chem Int Edit, 2001, 40(9): 1743-1746.

[12] F Shi, X Chen, L Wang, et al.. Roselike microstructures formed by direct in situ hydrothermal synthesis: From superhydrophilicity to superhydrophobicity[J]. Chem Mater, 2005, 17(24): 6177-6180.

[13] N J Shirtcliffe, G McHale, M I Newton, et al.. Wetting and wetting transitions on copper-based super-hydrophobic surfaces[J]. Langmuir, 2005, 21(3): 937-943.

[14] K Y Yeh, L J Chen, J Y Chang. Contact angle hysteresis on regular pillar-like hydrophobic surfaces[J]. Langmuir, 2008, 24(1): 245-251.

[15] E Gogolides, M Vlachopoulou, K Tsougeni, et al.. Micro and nano structuring and texturing of polymers using plasma processes: Potential manufacturing applications[J]. International Journal of Nanomanufacturing, 2010, 6(1-4): 152-163.

[16] 刘莹, 蒋毅坚. 准分子激光快速制备超疏水性聚偏氟乙烯材料[J]. 中国激光, 2011, 38(1): 0106002.

    Liu Ying, Jiang Yijian. Super-hydrophobic surface of poly (vinylidene fluoride) film fast fabricated by KrF excimer laser irradiation[J]. Chinese J Lasers, 2011, 38(1): 0106002.

[17] 温雅, 彭滟, 张冬生, 等. 飞秒激光脉冲能量对SF6气体环境下硅表面尖峰结构形成的影响[J]. 中国激光, 2012, 39(4): 0406001.

    Wen Ya, Peng Yan, Zhang Dongsheng, et al.. Effect of pulse energy of femtosecond laser on the formation of spikes on the silicon surface in the ambient gas of SF6[J]. Chinese J Lasers, 2012, 39(4): 0406001.

[18] 杨焕, 黄珊, 段军, 等. 飞秒与纳秒激光刻蚀单晶硅对比研究[J]. 中国激光, 2013, 40(1): 0103003.

    Yang Huan, Huang Shan, Duan Jun, et al.. Contrastive study on laser ablation of single-crystal silicon by 1030 nm femtosecond laser and 355 nm nanosecond laser[J]. Chinese J Lasers, 2013, 40(1): 0103003.

[19] 吴勃, 周明, 李保家, 等. 不锈钢表面陷光微构造的纳秒激光制备[J]. 中国激光, 2013, 40(9): 0903002.

    Wu Bo, Zhou Ming, Li Baojia, et al.. Fabrication of light trapping microstructures on stainless steel surface by nanosecond laser[J]. Chinese J Lasers, 2013, 40(9): 0903002.

[20] T Baldacchini, J E Carey, M Zhou, et al.. Superhydrophobic surfaces prepared by microstructuring of silicon using a femtosecond laser[J]. Langmuir, 2006, 22(11): 4917-4919.

[21] V Zorba, E Stratakis, M Barberoglou, et al.. Biomimetic artificial surfaces quantitatively reproduce the water repellency of a lotus leaf[J]. Adv Mater, 2008, 20(21): 4049-4054.

[22] J Yong, Q Yang, F Chen, et al.. Stable superhydrophobic surface with hierarchical mesh-porous structure fabricated by a femtosecond laser[J]. Appl Phys A, 2013, 111(1): 243-249.

[23] 高胜淼, 韩培高, 闫珂柱. 飞秒激光对硅表面微构造的研究进展[J]. 激光与光电子学进展, 2013, 50(11): 110002.

    Gao Shengmiao, Han Peigao, Yan Kezhu. Research progress of femtosecond laser fabricating silicon-based micro/nano structure[J]. Laser & Optoelectronics Progress, 2013, 50(11): 110002.

[24] A M Kietzig, S G Hatzikiriakos, P Englezos. Patterned superhydrophobic metallic surfaces[J]. Langmuir, 2009, 25(8): 4821-4827.

[25] B K Nayak, M C Gupta, K W Kolasinski. Formation of nano-textured conical microstructures in titanium metal surface by femtosecond laser irradiation[J]. Appl Phys A, 2008, 90(3): 399-402.

[26] R Jagdheesh, B Pathiraj, E Karatay, et al.. Laser-induced nanoscale superhydrophobic structures on metal surfaces[J]. Langmuir, 2011, 27(13): 8464-8469.

[27] J Noh, J H Lee, S Na, et al.. Fabrication of hierarchically micro-and nano-structured mold surfaces using laser ablation for mass production of superhydrophobic surfaces[J]. Jpn J Appl Phys, 2010, 49(10R): 106502.

[28] T Jiang, J Koch, C Unger, et al.. Ultrashort picosecond laser processing of micro-molds for fabricating plastic parts with superhydrophobic surfaces[J]. Appl Phys A, 2012, 108(4): 863-869.

[29] B K Nayak, P O Caffrey, C R Speck, et al.. Superhydrophobic surfaces by replication of micro/nano-structures fabricated by ultrafast-laser-microtexturing[J]. Appl Surf Sci, 2013, 266: 27-32.

[30] X Liang, S Wang, J Fan, et al.. Development of composite insulators in China[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1999, 6(5): 586-594.

[31] 李拓, 杨金鑫, 文秀芳, 等. 硅橡胶超疏水涂料的制备及其防闪络性能[J]. 有机硅材料, 2008, 22(5): 290-295.

    Li Tuo, Yang Jinxin, Wen Xiufang, et al.. Preparation and properties of RTV superhydrophobic surface as a antiflashover coating[J]. Silicone Material, 2008, 22(5): 290-295.

[32] 周蕊, 金海云, 高乃奎, 等. 表面粗糙度对硅橡胶材料表面超疏水性的影响[J]. 中国表面工程, 2009, 22(6): 30-35.

    Zhou Rui, Jin Haiyun, Gao Naikui, et al.. Influence of surface roughness on superhydrophobicity of silicone rubber surface[J]. China Surface Engineering, 2009, 22(6): 30-35.

[33] A Y Vorobyev, C Guo. Femtosecond laser nanostructuring of metals[J]. Opt Express, 2006, 14(6): 2164-2169.

[34] K H Leitz, B Redlingshfer, Y Reg, et al.. Metal ablation with short and ultrashort laser pulses[J]. Physics Procedia, 2011, 12(3): 230-238.

[35] Y Reg, C Kgeler, M Schmidt. Experimental studies on effects at micro-structuring of highly reflecting metals using nano-and picosecond-lasers[J]. Physics Procedia, 2010, 5(8): 245-253.

[36] N A Patankar. Mimicking the lotus effect: Influence of double roughness structures and slender pillars[J]. Langmuir, 2004, 20(19): 8209-8213.

[37] C W Extrand. Modeling of ultralyophobicity: Suspension of liquid drops by a single asperity[J]. Langmuir, 2005, 21(23): 10370-10374.

[38] R N Wenzel. Resistance of solid surfaces to wetting by water[J]. Ind Eng Chem Research, 1936, 28(8): 988-994.

[39] A B D Cassie, S Baxter. Wettability of porous surfaces[J]. Trans Faraday Soc, 1944, 40: 546-551.

林澄, 钟敏霖, 范培迅, 龙江游, 龚鼎为, 张红军. 皮秒激光制备大面积荷叶结构及其硅橡胶超疏水性压印研究[J]. 中国激光, 2014, 41(9): 0903007. Lin Cheng, Zhong Minlin, Fan Peixun, Long Jiangyou, Gong Dingwei, Zhang Hongjun. Picosecond Laser Fabrication of Large-Area Surface Micro-Nano Lotus-Leaf Structures and Replication of Superhydrophobic Silicone Rubber Surfaces[J]. Chinese Journal of Lasers, 2014, 41(9): 0903007.

本文已被 8 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!