红外与毫米波学报, 2019, 38 (2): 02228, 网络出版: 2019-05-10  

GaSb基垂直腔面发射激光器P面反射镜优化设计

AOptimal design of P-side mirror for GaSb based vertical cavity surface emitting laser
作者单位
1 长春理工大学 高功率半导体激光国家重点实验室, 吉林 长春 130022
2 长春理工大学 科技部国家纳米操纵与制造国际联合研究中心, 吉林 长春 130022
摘要
针对当前2.0 μm GaSb基垂直腔面发射激光器发展中由于传统的P面分布布拉格反射镜(P-DBRs)带来的高电阻和严重光吸收这一瓶颈问题, 采用严格耦合波方法仿真设计了含高对比度亚波长光栅(HCG)的P面反射镜.实验结果表明, 这种制备工艺简单的反射镜在2.0 μm 中心波长附近, TM波入射时反射率超过99.5%的高反射带宽为278 nm, 反射率99.9%以上的高反射带宽达到148 nm, 完全能够满足VCSEL对谐振腔镜的要求, 且能有效避免因异质外延等造成反射镜衍射特性劣化等问题.
Abstract
The high resistance and severe optical absorption brought by the traditional P-side distributed Bragg reflectors (P-DBRs) have been the bottleneck of the development of 2.0 μm GaSb based vertical cavity surface emitting lasers (VCSELs). For this reason, a P-side mirror with high contrast subwavelength grating (HCG) is designed and simulated by the rigorous coupled wave analysis method. The testing results show the HCGmirror,easy to make, has 278nm bandwidth with reflectivity more than 99.5% and 148 nm bandwidth with reflectivity greater than 99.9% around the central wavelength of 20 μm for TM mode. Such a mirror can fully meet the requirements of VCSELs, and can effectively avoid the problem of diffraction characteristics deterioration caused by heteroepitaxy and so on.
参考文献

[1] Tan Z W, Yang C C, Zhu Y X, et al. A 70 Gbps NRZ optical link based on 850 nm band-limited VCSEL for data-center intra-connects[J]. Science China(Information Sciences), 2018, 61(08): 83-89.

[2] Guan B L, Liu X, Jiang X W, et al. Multi-transverse-mode and wavelength split characteristics of vertical cavity surface emitting laser[J]. Acta Physica Sinica, 2015, 64(16): 164203.

[3] ZHOU Guang-Zheng, YAO Shun, YU Hong-Yan, et al. Optimized design and epitaxy growth of high speed 850 nm vertical-cavity surface-emitting lasers[J]. Acta Physica Sinica(周广正, 尧舜, 于洪岩, 等. 高速850 nm垂直腔面发射激光器的优化设计与外延生长.物理学报), 2018, 67(10): 104205.

[4] Huang Y W, Zhang X, Zhang J W, et al. Non-periodic wide-angle beam steering HCG array for application in VCSEL[J]. J.Infrared Millim. Waves, 2018, 37(1): 20-25.

[5] Wang X, Hao Y Q, YAN Chang-Ling, et al. High power single-higher-mode VCSEL with inverted surface relief[J] J. Infrared Millim. Waves,2018, 37(02) 168-172.

[6] Grabherr M, Jager R, Miller M,et al. Bottom-emitting VCSEL's for high-CW optical output power[J]. Photonics Technology Letters IEEE, 1998, 10(8):1061-1063.

[7] LIU Cheng. Device processing and optoelectronic characterizations of long-wavelength vertical-cavity surface-emitting laser[D]. Shanghai: Shanghai Institute of Microsystem and Information Technology Chinese Academy of Sciences(刘成. 长波长垂直腔面发射激光器器件工艺与光电特性研究. 上海: 中国科学院上海微系统与信息技术研究所), 2007.

[8] Sanchez D, Cerutti L, Tournié E. Single-mode monolithic GaSb vertical-cavity surface-emitting laser[J]. Optics Express, 2012, 20(14):15540.

[9] Baranov A N, Rouillard Y, Boissier G, et al. Sb-based monolithic VCSEL operating near 2.2 μm at room temperature[J]. Electronics Letters, 1998, 34(3): 281-282.

[10] Dier O, Lauer C, Amann M C. n-InAsSb/p-GaSb tunnel junctions with extremely low resistivity[J]. Electronics Letters, 2006, 42(7): 419-420.

[11] Bachmann A, Lim T, Kashani-Shirazi k, et al. Continuous-wave operation of electrically pumped GaSb-based vertical cavity surface emitting laser at 2.3m[J]. Electronics Letters, 2008, 44(3): 202-203.

[12] Arafin S, Bachmann A, Vizbaras K, et al. 2010 22nd ISLC International semiconductor laser conference: Large-aperture single-mode GaSb-based BTJ-VCSELs at 2.62 ?m[C]. Kyoto Japan: IEEE, 2010: 47-48.

[13] Huang M C Y, Zhou Y, Changhasnain C J. A surface-emitting laser incorporating a high-index-contrast subwavelength grating[J]. Nature Photonics, 2007, 1(2): 119-122.

[14] Kashino J, Inoue S, Matsutani A, et al. Photonics Conference: Transverse mode control of VCSELs using angular dependent high-contrast grating mirror[C]. USA: IEEE, 2013: 244-245.

[15] Ferrara J, Yang W, Zhu L, et al. Heterogeneously integrated long-wavelength VCSEL using silicon high contrast grating on an SOI substrate[J]. Optics Express, 2015, 23(3): 2512.

[16] Laaroussi Y, Chevallier C, Genty F, et al. Oxide confinement and high contrast grating mirrors for Mid-infrared VCSELs[J]. Optical materials express, 2013, 3(10): 1576-1585.

[17] GUO Chu-Cai, YE Wei-Min, YUAN Xiao-Dong, et al.Research on reflection characteristics of sub-wavelength gratings[J].Acta Optica Sinica(郭楚才, 叶卫民, 袁晓东, 等. 亚波长光栅反射特性研究. 光学学报), 2009, 29(12):3272-3276.

[18] LI Shuo, GUAN Bao-Lu, SHI Guo-Zhu, et al. Polarization stable vertical-cavity surface-emitting laser with surface sub-wavelength grating[J]. Acta Physica Sinica(李硕, 关宝璐, 史国柱, 等. 亚波长光栅调制的偏振稳定垂直腔面发射激光器研究.物理学报), 2012, 61(18):184208.

[19] TIAN H, CUI X, DU Y, et al. Broadband high reflectivity in subwavelength-grating slab waveguides[J]. Optics Express, 2015, 23(21):27174.

[20] LI Xiu-Shan, NING Yong-Qiang, ZHANG Xing, et al. Influence of grating parameters on reflectivity of Si/ SiO2 high contrast gratings[J].Chinese Journal of Luminescence(李秀山, 宁永强, 张星, 等.Si/SiO2高对比光栅参数对反射率的影响.发光学报), 2015, 36(7):806-810

[21] Tamir T, Wang H C. Scattering of electromagnetic waves by a sinusoidally stratified half-space: I. Formal solution and analytic approximations[J]. Canadian Journal of Physics,1966, 44(9): 2073-2094.

郝永芹, 岳光礼, 邹永刚, 王作斌, 晏长岭, 马晓辉. GaSb基垂直腔面发射激光器P面反射镜优化设计[J]. 红外与毫米波学报, 2019, 38(2): 02228. HAO Yong-Qin, YUE Guang-Li, ZOU Yong-Gang, WANG Zuo-Bin, YAN Chang-Ling, MA Xiao-Hui. AOptimal design of P-side mirror for GaSb based vertical cavity surface emitting laser[J]. Journal of Infrared and Millimeter Waves, 2019, 38(2): 02228.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!