红外与激光工程, 2020, 49 (8): 20190501, 网络出版: 2020-12-31   

星载云–气溶胶激光雷达光机系统结构及研究进展 下载: 603次

Opto-mechanical system structure and research progress of space-borne lidar for cloud-aerosol
作者单位
1 中国科学院合肥物质科学研究院 安徽光学精密机械研究所 中国科学院大气光学重点实验室,安徽 合肥 230031;中国科学技术大学研究生院 科学岛分院,安徽 合肥 230026;先进激光技术安徽省实验室,安徽 合肥 230037;皖西学院 机械与车辆工程学院,安徽 六安 237012
2 中国科学院合肥物质科学研究院 安徽光学精密机械研究所 中国科学院大气光学重点实验室,安徽 合肥 230031;中国科学技术大学研究生院 科学岛分院,安徽 合肥 230026;先进激光技术安徽省实验室,安徽 合肥 230037
引用该论文

李路, 谢晨波, 庄鹏, 邢昆明, 方志远, 储玉飞, 邵甲第, 王邦新. 星载云–气溶胶激光雷达光机系统结构及研究进展[J]. 红外与激光工程, 2020, 49(8): 20190501.

Lu Li, Chenbo Xie, Peng Zhuang, Kunming Xing, Zhiyuan Fang, Yufei Chu, Jiadi Shao, Bangxin Wang. Opto-mechanical system structure and research progress of space-borne lidar for cloud-aerosol[J]. Infrared and Laser Engineering, 2020, 49(8): 20190501.

参考文献

[1] 段婧, Duan Jing, Mao Jietai, 毛节泰. Progress in researches on interaction between aerosol and cloud[J]. Advances in Earth Science, 2008, 23(3): 252-261.

[2] 张军强, Zhang Junqiang, Xue Chuang, 薛闯, 高志良, Gao Zhiliang. Optical remote sensor for cloud and aerosol from space: past, present and future[J]. Chinese Optics, 20158(5): 5-24.

[3] 王富. 中国东部地区气溶胶—云相互作用卫星遥感建模研究[D]. 成都: 电子科技大学, 2015.Wang Fu. Analysis of aerosolcloud interaction observed from spacebne senss over Eastern China[D]. Chengdu: University of Electronic Science Technology of China, 2015. (in Chinese)

[4] IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Wking Group I to the Fifth Assessment Rept of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2013.

[5] Rao C R N, Stowe L L, Mcclain E P. Remote sensing of aerosols over the oceans using AVHRR data Theory, practice and applications[J]. International Journal of Remote Sensing, 1989, 10(4-5): 743-749.

[6] Torres O, Bhartia P K, Herman J R. A long-term record of aerosol optical depth from TOMS observations and comparison to AERONET measurements[J]. Journal of the Atmospheric Sciences, 2002, 59(3): 398-413.

[7] Curier R L, Veefkind J P, Braak R. Retrieval of aerosol optical properties from OMI radiances using a multiwavelength algorithm: Application to western Europe[J]. Journal of Geophysical Research Atmospheres, 2008, 113(D17): 1-16.

[8] Barnes W L, Xiong X, Guenther B W, et al. Development, acterization, perfmance of the EOS MODIS senss[C]Proceedings of SPIEThe International Society f Optical Engineering, 2003, 5151: 337345.

[9] Martonchik J V, Diner D J, Crean K A. Regional aerosol retrieval results from MISR[J]. IEEE Transactions on Geoscience & Remote Sensing, 2002, 40(7): 1520-1531.

[10] Deuzé J L, Goloub P, Herman M. Estimate of the aerosol properties over the ocean with POLDER[J]. Journal of Geophysical Research Atmospheres, 2000, 105(D12): 15329-15346.

[11] 郑永超, Zheng Yongchao, 王玉诏, Wang Yuchao, Yue Chunyu, 岳春宇. Technical and application development study of space-borne atmospheric environment observation lidar[J]. Infrared and Laser Engineering, 2018, 47(3): 0302002.

[12] 宋长波, Song Changbo, Zhao Yiming, 赵一鸣. Development status and direction of spaceborne lidar and radar for cloud and aerosol remote sensing[J]. Journal of Telemetry, Tracking and Command, 2017, 38(6): 10-16.

[13] 卢乃锰, Lu Naimeng, Min Min, 闵敏, 董立新, Dong Lixin. Development and prospect of spaceborne LIDAR for atmospheric detection[J]. Journal of Remote Sening, 2016, 20(1): 1-10.

[14] Winker D M, Couch R H, Mccormick M P. An overview of LITE: NASA's Lidar in-space technology experiment[J]. Proceedings of the IEEE, 1996, 84(2): 164-180.

[15] LITE: Measuring the atmosphere with laser precision [EBOL]. (19940801) [20180330]. https:www.nasa.govcenterslangleynewsfactsheetsLITE.html.

[16] Matvienko G G. Modern concept of a spacebne lidar[C] International Symposium on Atmospheric Ocean Optics. International Society f Optics Photonics, 1999.

[17] NASA''s Successful ice cloud l elevation mission comes to an end [EBOL]. (20100827)[20180531]. https:www.nasa.govmission_pagesicesaticesatend.html.

[18] Winker D M, Hostetler C A. Status perfmance of the CALIOP lidar[C]Proceedings of SPIEThe International Society f Optical Engineering, 2004, 5575: 815.

[19] Winker D M, Vaughan M A, Omar A. Overview of the CALIPSO mission and CALIOP data processing algorithms[J]. Journal of Atmospheric & Oceanic Technology, 2009, 26(11): 2310-2323.

[20] Stephens M, Weimer C, Lieber M. Onbit models of the CALIOP lidar f enabling future mission design[C] Earth Observing Systems XV. International Society f Optics Photonics, 2010: 227235.

[21] Chuang T, Burns P, Walters E B, et al. Spacebased, multiwavelength solidstate lasers f NASA''s Cloud Aerosol Transpt System f International Space Station (CATSISS)[C]Solid State Lasers XXII: Technology Devices, 2013: 8599: 85990N.

[22] Yks J E, Mcgill M J, Nowottnick E P. Near real time vertical profiles of clouds aerosols from the CloudAerosol Transpt System (CATS) on the international space station[C] AGU Fall Meeting. AGU Fall Meeting Abstracts, 2015.

[23] Stm M, Stevenson G, Hovis F, et al. Lidar laser technology f NASA’S CloudAerosol Transpt System (CATS) payload on the international space station (JEMEF)[C]EPJ Web of Conferences , 2016, 119: 04002.

[24] Forfinski-Sarkozi N A, Parrish C. Analysis of MABEL Bathymetry in Keweenaw bay and implications for ICESat-2 ATLAS[J]. Remote Sensing, 2016, 8(9): 772.

[25] Lori A Magruder, Kelly M Brunt. Performance analysis of airborne photon-counting lidar data in preparation for the ICESat-2 mission[J]. IEEE Transactions on Geoscience & Remote Sensing, 2018, 99: 1-8.

[26] Nicholas Sawruk, Patrick M Burns, Ryan E Edwards, et al. ICESat2 laser Nd: YVO4 amplifier[C]Components Packaging f Laser Systems IV. Society of PhotoOptical Instrumentation Engineers (SPIE) Conference Series, 2018.

[27] João P D C, Hélière A, Hs L L, et al. ATLID, ESA atmospheric LIDAR developement status[C]EPJ Web of Conferences, 2016, 119: 04003.

[28] Hs L L, Toulemont Y, Hélière A. Design development of the backscatter LIDAR ATLID f EarthCARE[C] International Conference on Space Optics, 2017: 53.

[29] Hélière A, Hs L L, Toulemont Y. Development of ATLID, the earthcare UV backscatter lidar[C]Society of PhotoOptical Instrumentation Engineers. Society of PhotoOptical Instrumentation Engineers (SPIE) Conference Series, 2017: 27.

[30] Hélière A, Gelsthpe R, Hs L L, et al. ATLID, the atmospheric lidar on board the Earthcare Satellite[C] Society of PhotoOptical Instrumentation Engineers. Society of PhotoOptical Instrumentation Engineers (SPIE) Conference Series, 2017: 81.

[31] Maring H, Bontempi P. Aerosol cloud ecosystem(ACE) decadal survey mission[ROL]. (20101116)[20180125]. https:acemission.gsfc.nasa.gov.

[32] Rout D, Chakrabarty D, Sarkhel S. The ionospheric impact of an ICME driven sheath region over Indian and American sectors in the absence of a typical geomagnetic storm: ICME sheath region and PP electric field[J]. Journal of Geophysical Research: Space Physics, 2018, 123(5): 4298-4308.

[33] Schmid B, Hlavka D, Spinhirne J. Cloud Physics Lidar: instrument description and initial measurement results[J]. Applied Optics, 2002, 41(18): 3725-3734.

[34] Yorks J E, Mcgill M J, Scott V S. The Airborne cloud–aerosol transport system: overview and description of the instrument and retrieval algorithms[J]. Journal of Atmospheric & Oceanic Technology, 2014, 31(11): 2482-2497.

[35] Sein E, Toulemont Y, Safa F, et al. A Φ 3.5 M SiC telescope f Herschel mission[C]SPIE, 2003, 4850: 606618.

[36] 王智, Wang Zhi, Sha Wei, 沙巍, 陈哲, Chen Zhe. Preliminary design and analysis of telescope for space gravitational wave[J]. Chinese Optics, 2018, 11(1): 131-151.

[37] 穆永吉, Mu Yongji, Wan Yuan, 万渊, 刘继桥, Liu Jiqiao. Optomechanical analysis and optimization of spaceborne lidar telescope primary mirror[J]. Infrared and Laser Engineering, 2018, 47(7): 0718002.

[38] 赵海波, Zhao Haibo, Zhao Weiguo, 赵伟国, 董吉洪, Dong Jihong. Accuracy analysis and testing for secondary mirror adjusting mechanism in large space telescope[J]. Optics and Precision Engineering, 2019, 27(11): 2374-2383.

[39] Nixon C A, Achterberg R K, Adamkovics M. Titan science with the James Webb Space Telescope (JWST)[J]. Publications of the Astronomical Society of the Pacific, 2016, 128(959): 018007.

[40] 赵宏超, Zhao Hongchao, Zhang Jingxu, 张景旭, 杨飞, Yang Fei. Secondary mirror supporting structure for 1.2 m telescope[J]. Editorial Office of Optics and Precision Engineering, 2017, 25(10): 2614-2619.

李路, 谢晨波, 庄鹏, 邢昆明, 方志远, 储玉飞, 邵甲第, 王邦新. 星载云–气溶胶激光雷达光机系统结构及研究进展[J]. 红外与激光工程, 2020, 49(8): 20190501. Lu Li, Chenbo Xie, Peng Zhuang, Kunming Xing, Zhiyuan Fang, Yufei Chu, Jiadi Shao, Bangxin Wang. Opto-mechanical system structure and research progress of space-borne lidar for cloud-aerosol[J]. Infrared and Laser Engineering, 2020, 49(8): 20190501.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!