邵春沅 1,*顾明剑 1,**漆成莉 2李路 2[ ... ]陈星 1
作者单位
摘要
1 中国科学院上海技术物理研究所红外探测与成像技术重点实验室,上海 200083
2 中国气象局国家卫星气象中心,北京 100081
基于仪器的光学视场特性进行有限视场和离轴效应的光谱模拟,研究针对面阵傅里叶光谱仪光谱校正的方法。首先,开展仪器线型函数(ILS)影响分析,确定不同影响因素(有限光程差、有限视场、离轴效应等)的分析方法;其次,以面阵型圆形探测器为例,结合仪器自身光学特性,构建仪器线型函数模型;然后,利用气体吸收光谱模拟离轴效应产生的光谱定标误差和光谱敏感性;最后,基于FY-3F/HIRAS-Ⅱ发射前光谱定标数据,进行光谱校正和定标精度验证。实验结果表明:有限视场和离轴效应使得光谱存在展宽,并向低波数方向偏移。经过光谱定标和校正,中心最差像元光谱定标精度由-24.69×10-6减小到0.54×10-6,边缘最差像元由-513.38×10-6减小到-0.15×10-6,且3个波段内所有像元均满足小于7×10-6的指标要求。
光谱学 光谱定标 仪器线型函数 离轴效应 红外高光谱大气探测仪 
光学学报
2024, 44(12): 1230001
李路 1,2邢昆明 2,*赵明 2邓迁 2[ ... ]施云 1
作者单位
摘要
1 皖西学院 机械与车辆工程学院,安徽 六安 237012
2 中国科学院安徽光学精密机械研究所 中国科学院大气光学重点实验室,安徽 合肥 230031
3 中国科学技术大学,安徽 合肥 230026
设计和构建了发射波长为355 nm和532 nm的户外型全天时激光雷达系统,用于探测大气气溶胶和水汽。运用355 nm和532 nm的米散射、532 nm的偏振、氮气和水汽分子的拉曼激光雷达技术,用于对边界层结构、对流层气溶胶和云光学特性及其形态、水汽混合比进行连续探测研究。该系统结构紧凑,运输方便,具备远程操作、数据传输、一键式启动等功能。利用该系统对大气气溶胶和水汽进行探测,探测结果表明:在大气气溶胶的探测过程中,在重污染条件下混合层高度较干净天低,在0.5 km以下,而干净天在1 km左右;通过对消光系数、Angstrom指数和退偏振比分析可知,重污染条件下,底层大气气溶胶以球形粗粒子污染物为主,干净天底层大气气溶胶以球形细粒子污染物为主;在云层中,Ang-strom指数明显减小,且出现负值,说明云粒子半径较大。在水汽探测过程中,采用自标定方法获得系统的标定常数为121,与已标定的激光雷达系统对比,误差在±0.3 g/kg以内;连续探测结果表明可对夜晚5 km及白天混合层以内进行探测。该系统满足产品化的需求,可广泛运用于大气环境的监测领域中。
激光雷达 气溶胶 水汽混合比 消光系数 Angstrom指数 退偏振比 lidar aerosol water vapor mixture ratio extinction coefficient Angstrom exponent depolarization ratio 
红外与激光工程
2023, 52(4): 20220484
作者单位
摘要
1 北京理工大学 光电学院, 北京0008
2 中国气象局中国遥感卫星辐射测量和定标重点开放实验室/国家卫星气象中心 (国家空间天气监测预警中心), 北京100081
3 许健民气象卫星创新中心, 北京100081
为了提高风云三号D星(FY-3D)上搭载的高光谱红外大气探测仪(HIRAS)的辐射定标精度,对HIRAS数据预处理中使用的相位校正模块做了改进。相位校正是预处理流程中的基本处理步骤之一,用于确定干涉图的零光程差位置(ZPD),ZPD是傅里叶变换的中心同时也是傅里叶变换的前提,对反演光谱具有重要影响,但目前业务中使用的相位校正方法只能将ZPD精确到整数采样点,本文基于仪器相位方法将对地观测、黑体观测和冷空观测的光谱相位相互比较,提取出线性相位分量,从而将ZPD精度提升到亚采样级。HIRAS与JPSS-1/CrIS比对结果显示,改进后的相位校正方法使三波段的平均偏差分别下降约0.1 K,0.4 K和0.8 K,三波段的偏差标准差分别下降约0.06 K,0.2 K和1.5 K,同时偏差对目标温度的依赖性也有所降低。改进后的相位校正方法弥补了原相位校正模块的缺点,有效减小HIRAS的辐射不确定度。
高光谱 相位校正 零光程差 仪器相位 hyperspectral phase correction zero optical path difference phase of instrument 
光学 精密工程
2023, 31(10): 1419
左丰华 1胡秀清 2,3,*王霞 1漆成莉 2,3[ ... ]李路 2,3
作者单位
摘要
1 北京理工大学光电学院,北京 100081
2 中国气象局中国遥感卫星辐射测量和定标重点开放实验室,国家卫星气象中心(国家空间天气监测预警中心),北京 100081
3 许健民气象卫星创新中心,北京 100081
我国晨昏轨道气象卫星风云三号E星(FY-3E)上搭载了红外高光谱大气探测仪II型(HIRAS-II),该仪器的高地理定位精度和辐射定标精度是其观测资料定量化应用的关键。采用交叉比对方法,基于同卫星平台搭载的中分辨率光谱成像仪-微光型(MERSI-LL),评估HIRAS-II的地理定位和辐射定标相对偏差。两台仪器的观测数据样本经空间匹配后,采用MERSI-LL数据评估匹配样本的观测背景均匀性,用海陆或云体边界的非均匀背景观测样本评估HIRAS-II的地理定位精度,用晴空海洋等场景的均匀背景观测样本评估HIRAS-II的辐射定标精度。在交叉比对前,将HIRAS-II观测辐射光谱与MERSI-LL各红外通道光谱响应函数积分得到MERSI-LL各红外通道的高光谱模拟观测数据。结果表明:星下点处HIRAS-II地理定位沿轨道方向偏离3.53 km,沿跨轨道方向偏离2.01 km;在辐射定标精度方面,HIRAS-II与MERSI-LL多数通道的辐射亮温(BT)偏差均值小于0.50 K,偏差标准差小于0.40 K,仅4.05 μm通道对低温目标的偏差较大,且该通道温度依赖明显;4.05 μm通道BT偏差随扫描角度呈现波动性变化,8.55 μm通道BT偏差随扫描角度变化不明显,其他通道BT偏差随扫描角度的变化规律与目标温度有关;偏差长时间序列分析表明,BT偏差整体保持稳定。
光谱学 红外高光谱大气探测仪II型 中分辨率光谱成像仪-微光型 地理定位 辐射定标 
光学学报
2022, 42(24): 2430002
曹也 1,2,3,*程亮亮 1,2,3杨昊 1,2,3方志远 1,2,3[ ... ]谢晨波 1,2,3
作者单位
摘要
1 中国科学院合肥物质科学研究院安徽光学精密机械研究所大气光学重点实验 室, 安徽 合肥 230031
2 中国科学技术大学, 安徽 合肥 230026
3 先进激光技术安徽省实验室, 安徽 合肥 230037
激光雷达作为大气探测的有效手段之一, 逐渐向小型化、轻量化的趋势发展。针对激光雷达的功能专用性, 基于现场可编程门阵列 (FPGA) 对探测、采集系统进行了集成优化设计。逻辑中各模块之间通过握手协议和同步有限状态机有序配合完成数据链路的构建和传递。系统以 FIFO 作 为 ADC 的数据存储器, 通过 AXI 总线协议配合 Xilinx MIG IP 有序将 FIFO 的数据突发缓存到 DDR 中, 并且通过千兆以太网完成对采集数据的传输。该激光雷达数据采集卡集成光电倍增管增益控制和回波信号采集功能, 并采用兼容性硬件和逻辑设计, 具有集成度高、增益调节便捷且精度高、采集快速方便以及快速适配等诸多优点。
激光雷达 光电倍增管 数据采集 千兆以太网 现场可编程门阵列 lidar photomultiplier tube data acquisition Gigabit Ethernet field programmable gate array 
量子电子学报
2022, 39(4): 620
李路 1,2徐俞 3曹冰 1,2徐科 3
作者单位
摘要
1 苏州大学光电科学与工程学院,苏州 215006
2 江苏省先进光学制造技术重点实验室和教育部现代光学技术重点实验室,苏州 215006
3 中国科学院苏州纳米技术与纳米仿生研究所,苏州 215123
AlGaN基材料作为带隙可调的直接带隙宽禁带半导体材料,是制备紫外光电子器件的理想材料。在无法获得大尺寸、低成本的同质衬底的情况下,高质量AlN薄膜的异质外延是促进紫外光电子器件发展的关键。本文中,通过调节蓝宝石衬底上AlN的金属有机物化学气相沉积(MOCVD)生长模式产生高密度纳米级孔洞,利用纳米级孔洞降低AlN的位错,并在此基础上外延了AlGaN量子阱结构,得到了275 nm波段的深紫外LED薄膜,并制备了开启电压约为4.8 V,反向漏电电流仅为2.23 μA(-3.0 V电压时)的深紫外LED器件。
AlN薄膜 AlGaN材料 紫外LED 异质外延 纳米级孔洞 AlN thin film AlGaN material ultraviolet LED heterogeneous epitaxy nanoscale hole 
人工晶体学报
2022, 51(7): 1158
作者单位
摘要
1 国家卫星气象中心, 北京 100081
2 中国科学院上海技术物理研究所红外探测与成像重点实验室, 上海 200083
干涉式红外探测仪(GIIRS)是我国地球静止轨道气象卫星风云四号B星的主要载荷,可观测大气上行红外高光谱辐射,因此可应用于大气温湿度廓线反演和数值天气预报模型同化。为了预测GIIRS在发射后的工作性能,于发射前在地面试验室热真空环境中采用黑体定标试验的方法,对仪器辐射性能进行了测试,测试的性能包括仪器灵敏度、辐射定标精度和动态观测范围。其中,长波红外通道的噪声等效辐射方差低于0.5 mW/(m 2·sr·cm -1),中波红外通道的噪声等效辐射方差低于0.1 mW/(m 2·sr·cm -1),两者均达到灵敏度设计指标。在辐射定标方面,经过非线性校正,长波光谱的平均定标偏差从1 K减小到0.2 K,且在220~315 K观测范围内达到0.7 K的设计指标;仪器在中波通道观测低温目标时受噪声影响较大,但在260~315 K的动态范围内,定标偏差也能够达到0.7 K的指标要求。
光谱学 傅里叶变换光谱学 静止轨道气象卫星 红外高光谱 辐射定标 仪器灵敏度 非线性校正 
光学学报
2022, 42(6): 0630001
李路 1,2,3,4谢晨波 1,3邢昆明 1,3王邦新 1,2,3[ ... ]程亮亮 1,2,3
作者单位
摘要
1 中国科学院合肥物质科学研究院安徽光学精密机械研究所中国科学院大气光学重点实验室,安徽 合肥 230031
2 中国科学技术大学研究生院科学岛分院,安徽 合肥 230026
3 先进激光技术安徽省实验室,安徽 合肥 230037
4 皖西学院 机械与车辆工程学院,安徽 六安 237012
为了后期研制星载高重频激光雷达提供数据校正及仿真,设计研制了一套小视场高重频激光雷达验证系统。对该激光雷达进行详细的光机系统结构设计,利用Zemax软件模拟发射、接收与后继单元光路图。精确计算出出射光束发散角为0.106 mrad,设计新型的光束转向结构确保正入射到扩束器中。在0.4 mm小孔光阑下,接收单元视场角0.25 mrad,在系统焦平面上的小孔光阑偏心不得超过29 μm,选择高精度三维调整结构对小孔光阑精确定位。整机结构设计采用模块化设计方法,以方形框架为基准,不同单元模块安装在其不同位置,高度集成在尺寸为390 mm×390 mm×550 mm以内。对发射单元进行装校,并检测出发散角为0.11 mrad,与仿真结果相比,相对误差为4.1%;对接收与后继单元进行装校,采用平行光管出射的平行光正入射到接收望远镜,获得系统焦点精确位置,完成高精度的装校。通过对系统增益比进行标定实验,得到系统增益比为1.15,并对系统进行探测实验,探测结果:系统在夜晚气溶胶探测距离可达22 km,退偏振比可达10 km。在白天探测距离可达10 km,退偏振比可达6 km,并与太阳光度计比较,光学厚度相对误差为7.1%。整机性能满足设计要求,为后期做飞行实验打好基础。
小视场高重频激光雷达 光机系统设计 装校 性能测试 lidar with small-field of view and high-repetition frequency opto-mechanical system design installation and calibration performance testing 
红外与激光工程
2021, 50(12): 20210046
李路 1,2,3,4庄鹏 1,2,3谢晨波 1,2,3王邦新 1,2,3邢昆明 1,2,3
作者单位
摘要
1 中国科学院合肥物质科学研究院 安徽光学精密机械研究所 中国科学院大气光学重点实验室,安徽 合肥 230031
2 中国科学技术大学研究生院科学岛分院,安徽 合肥 230026
3 先进激光技术安徽省实验室,安徽 合肥 230037
4 皖西学院 机械与车辆工程学院,安徽 六安 237012
多普勒测风激光雷达通过分析系统回波信号的多普勒频移反演出风速,为提高风场探测精度,从稳频技术方面展开研究。在稳频过程中,分别采取措施消除激光频率的长期漂移和短期抖动。针对激光频率的长期漂移,设计并研制了种子激光器温控箱,通过水浴的控温方式大大减小了激光频率的长期漂移,将激光频率稳定在±50 MHz以内;针对激光频率的短期抖动,采用以碘分子吸收池为核心器件的稳频系统,通过半导体控温方式对碘分子吸收池精确控温,控温精度达0.03 ℃,提高了稳频精度,将激光频率进一步稳定在±8 MHz以内,满足±10 MHz以内的设计精度要求。通过搭建多普勒测风激光雷达系统,对发射激光稳频装置进行系统验证,连续4组风场观测结果表明:系统探测高度为17 km,绝大部分方差在4 m/s以下,满足测风激光雷达测量指标的要求。
多普勒测风激光雷达 激光频率漂移 稳频 碘分子吸收池 温控 Doppler wind measurement lidar laser frequency drift frequency stabilization iodine molecular absorption cell temperature control 
红外与激光工程
2021, 50(3): 20200289
付松琳 1,2,3谢晨波 1,3,*李路 1,2,3方志远 1,2,3[ ... ]王英俭 1,3
作者单位
摘要
1 中国科学院合肥物质科学研究院安徽光学精密机械研究所, 中国科学院大气光学重点实验室, 安徽 合肥 230031
2 中国科学技术大学研究生院科学岛分院, 安徽 合肥 230026
3 先进激光技术安徽省实验室, 安徽 合肥 230037
针对颗粒物浓度的大气分布难以测量的问题,采用532 nm激光雷达,对淮南地区2016年6月1日至12月31日进行连续观测。利用大气边界层高度、气溶胶光学厚度、温度、相对湿度、风速、能见度和实测的颗粒物浓度建立回归预测模型,实现了对颗粒物浓度的辨识研究。由于传统的反向传播(BP)神经网络易陷入局部极小,依据数据特点采用基于遗传算法的反向传播(GA-BP)神经网络进行研究,利用遗传算法寻找最优的权值和阈值,以平衡全局与局部的矛盾。通过两个回归模型的比较,可知GA-BP方法明显优于BP方法,BP方法的测试集的相关指数R2是0.623,平均预测误差是24.692 μg/m 3;GA-BP方法的测试集的相关指数R2是0.899,平均预测误差是7.122 μg/m 3。由此说明激光雷达可以有效地监测大气颗粒物的分布,并为淮南地区的颗粒物监测提供数据支持和参考依据。
遥感 激光雷达 PM2.5浓度 光学性质 神经网络 遗传算法 
光学学报
2021, 41(9): 0928001

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!