光学学报, 2019, 39 (6): 0628003, 网络出版: 2019-06-17   

基于能量对称分布相位相关配准的资源三号02星颤振探测 下载: 878次

Jitter Detection of ZY3-02 Satellite Platform Using Phase-Correlation Registration Based on Symmetrical Energy Distribution
谢俊峰 1,2莫凡 1,*王怀 1李响 1,2朱红 1
作者单位
1 自然资源部国土卫星遥感应用中心, 北京 100048
2 辽宁技术工程大学测绘与地理科学学院, 辽宁 阜新 123000
摘要
颤振是卫星平台在轨运行的固有现象之一,也是高分辨率对地观测卫星研究的难点和热点。针对资源三号02星在轨运行过程中的平台颤振情况,提出了一种基于能量对称分布的相位相关配准算法。结合多光谱相机各谱段相机之间的安装关系,考虑到平台的线性平滑运动特性,采用二次函数消除系统变化量,得到线性拟合的平台颤振曲线,最后利用星敏陀螺数据联合滤波得到卫星姿态复合验证曲线。实验结果表明:在模拟数据情况下,所提配准算法的配准精度能够达到0.05 pixel,可有效辅助探测卫星平台的颤振,并首次探测到资源三号02星平台存在0.63~0.65 Hz的颤振,振幅为0.41″~1.12″。
Abstract
Jitter is an inherent phenomenon of on-orbit satellite platforms and is a difficult issue concerning high-resolution earth observation satellites. With respect to ZY3-02 platform's jitter, herein, we propose a phase-correlation registration algorithm based on symmetrical energy distribution. Combining the installation relation among charge-coupled devices at different spectral bands in the multi-spectral camera and considering the linearly smoothing motion characteristics of the satellite platform, we obtain a linear-fitted jitter curve using a quadratic function to eliminate system variation. Finally, satellite attitude data filtered from star tracker and gyro data are used to verify the obtained curve. Experimental results demonstrate that the matching accuracy of the proposed algorithm can reach 0.05 pixel using the simulated data, and thus it can effectively assist in the jitter detection of satellite platforms. Using the proposed method, jitter with the amplitude of 0.41″-1.12″ at the frequency of 0.63-0.65 Hz is detected in the ZY3-02 satellite platform for the first time.

1 引言

卫星平台颤振是指卫星在轨运行期间,平台的姿态控制、太阳帆板调整、星上运动部件周期性运动或因变轨冷热交变等因素引发的一种幅值较小的振动[1-2],它不仅会影响星体内部之间的安装关系,还会造成数据获取异常,导致后续数据处理难度较大或产品质量较差。因此,平台颤振探测是高分辨率对地观测卫星数据处理过程中的必要环节[3-5],也是高分辨率对地观测卫星研究的重点和难点。

卫星平台颤振探测方法近年来取得了一定发展,根据探测所依赖的参考基准,可将其归纳为4类:基于角位移传感器高频数据的探测[6-7]、基于密集地面控制的探测[8-9]、基于光学影像及其产品的探测[10-12]和基于卫星辅助数据的探测[13]

2016年5月30日,资源三号02星在太原卫星发射中心成功进入预定轨道[14]。资源三号02星是继资源三号01星之后的又一颗高分辨率立体测图业务卫星。双星组网运行,大幅提高了我国1∶50000立体测图信息源的获取能力。目前,针对资源三号01星平台颤振探测的研究较多,结合多光谱相机各谱段电荷耦合器件(CCD)之间的安装关系,利用高精度亚像素相位相关配准算法获取多光谱各谱段影像的视差曲线,最终得到平台的颤振情况。亚像素相位相关配准算法根据计算原理包括三类:拟合插值[15-16]、奇异值分解[17-18]和局部上采样[19-20]。局部上采样亚像素相位相关配准采用零填充的方式将频域灰度矩阵放大后再进行互相关,具有理论简单的特点,但配准精度难以达到设计值,且计算量较大。奇异值分解亚像素相位相关配准的核心是奇异值分解和相位解缠,具有较高的抗干扰性,但理论复杂,且解缠过程易引入不确定解。拟合插值亚像素相位相关配准是对互相关信息逆变换后的最优值计算,配准精度取决于最优值的提取精度,受影像质量的影响较大。研究结果表明:资源三号01星平台颤振的频率为0.65 Hz左右,在轨初期的振幅较大,可达到3″,在轨稳定后,振幅小于1″。资源三号02星与01星采用相同的平台,部分载荷进行了升级,且新增了一套实验性激光测高载荷。为了探测资源三号02星的平台颤振情况,考虑到资源三号02星多光谱影像数据质量较优,本文在拟合插值亚像素相位相关配准方法范畴内提出了一种基于能量对称的相位相关配准算法,采用模拟数据和真实数据验证所提配准算法的精确性和可靠性,通过高精度亚像素的密集配准获取逐像素的视差图,根据平台的线性平滑运动特性拟合平台的颤振曲线,利用扩展卡尔曼滤波(EKF)处理原始星敏感器数据和陀螺数据,得到卫星平台的真实姿态数据,最后基于真实的平台姿态数据对颤振探测结果进行复合验证。

2 卫星平台颤振探测

平台颤振探测对遥感卫星而言具有重要价值,学者们针对多颗遥感卫星平台开展了研究工作,颤振探测结果如表1所示[21]。可以看出,不同的卫星因搭载载荷、内部安装关系、轨道高度等不同,颤振的频率和振幅也不尽相同。

2.1 资源三号02星多光谱相机结构

资源三号02星搭载的多光谱相机采用多色TDI CCD推扫式成像系统。为了更好地获取地面的多光谱信息,各波段CCD需紧密安装在同一扫描列上,TDI CCD的物理特性使得每个波段之间均存在固定的物理间隔,导致各波段在成像上具有时间差。各波段CCD成像示意图如图1所示。

图 1. 资源三号02星多光谱相机成像示意图

Fig. 1. Schematic of multi-spectral camera imaging on ZY3-02 satellite

下载图片 查看所有图片

资源三号02星多光谱相机包含蓝、绿、红和近红外4个波段,依次记为B1、B2、B3和B4,地面分辨率均为5.8 m。多光谱各波段共视场成像,即同一时刻各波段CCD拍摄区域对应地面相隔一定距离的地面区域,同一区域被各波段CCD在不同的连续时刻拍摄到。每个波段由3片CCD组成,每片CCD包含3072个探测元器件。为了方便后期进行影像拼接,波段内相邻CCD之间具有195 pixel的重叠,每个像素大小为0.02 mm。在相机焦平面上,4个波段线阵CCD器件在沿轨方向上依次平行摆放,其不同谱段各片CCD的安装物理关系如图2所示。

多光谱相机相邻谱段同列CCD之间的安装间隔固定,卫星在飞行过程中相邻谱段CCD对同一地物不同时刻成像,获取的影像为含有微小时间差异的影像集。影像对中的各影像是在不同时刻获取的,通过高精度的影像配准能够获得微小时间内卫星平台相对姿态变化的信息。

表 1. 不同卫星平台颤振的频率和振幅

Table 1. Jitter frequency and amplitude of different satellite platforms

Satellite or sensorLaunch yearFrequencya /HzAmplitudeb /m
ISS[22-23]19930.01-300.00-
ETS-VI[13]19940.39-250.00-
MOC-NA[3]19961-4≈15
ASTER[4,24-25]19991.5-1.66-7
QuickBird [4]20011.0, 4.32.5, 0.1
SPOT 5[4]2002≈0.003≈20
ALSat-1[26]20020.5-
Nigeria Sat[26]20030.5-
UK-DMC[26]20030.6-
MEX-HRSC[27-28]20030.1-0.2, 1.78
HiRISE[4,29]2005≈1.6≈1
Beijing-1[30]20052003
ALOS[31-32]20066-7, 60-701000, 100
Kompsat-2[33]20062100.14
LROC[29,34]200960.1-1.0
Mapping Satellite-1[35]20100.105, 0.635, 4.0000.2, 0.1, 0.1
Pleiades-HR[22]201170.9-78.40.14
ZY3-01[5,10,12,36-37]20120.6-0.72.5-7.5
Yaogan-26[6]2014100, 200, 3000.1, 0.1, 0.1
aSatellite attitude jitter frequency may be detected in roll, pitch, or both; the information listed here are from either or both. bThe amplitude has been transformed from on-orbit arcsec or pixel to ground meter (from satellite to ground), which can show the influence of jitter intuitively. Amplitudes not listed in existing records and research are indicated by “-”.

查看所有表

图 2. 多光谱相机不同波段各片间的安装关系

Fig. 2. Installation relation among CCDs at different spectral bands in multi-spectral camera

下载图片 查看所有图片

2.2 基于能量对称的相位相关配准

相位相关影像配准法利用傅里叶变换将待配准的影像块转换到频域进行互相关,只采用影像块频域互功率谱中的相位信息,降低了图像灰度值的影响,减小了对影像内容的依赖,具有较高的抗干扰性[38]

相位相关影像配准法的原理是基于傅里叶变换的平移特性,即当两影像块只存在平移时,在频率域上体现出一个线性的相位角差。若待配准的两个影像块函数gf之间的偏移量分别为Δx和Δy,则[22]

g(x,y)=f(x-Δx,y-Δy)(1)

对(1)式两边分别进行傅里叶变换,并结合傅里叶变换的平移性质可得

G(u,v)=F(u,v)exp[-i(uΔx+vΔy)],(2)

式中:GF分别为影像gf的傅里叶变换矩阵。对(2)式变形可得到两影像块的互功率谱函数Q(u,v)为

Q(u,v)=exp[-i(uΔx+vΔy)]=F(u,v)·G-(u,v)|F(u,v)·G-(u,v)|,(3)

式中: G-G的共轭。对(3)式所示的互功率谱函数进行傅里叶逆变换,可得到(Δxy)处的单位脉冲函数δxy)为

δ(Δx,Δy)=fIFT[Q(u,v)]=fIFT{exp[-i(uΔx+vΔy)]},(4)

式中:fIFT为快速傅里叶逆变换函数。当两影像块为同一区域的影像时,在脉冲函数的(Δxy)处会取得峰值,其他位置处的值则远小于峰值,且接近0。

在基于能量对称的相位相关配准算法中,峰值前后值的大小次序决定着形式略有不同的计算公式,因此峰值计算分3种情况来讨论,当峰值前面的值大于后面的值时,峰值计算示意图如图3所示。

图 3. 能量峰值计算示意图

Fig. 3. Schematic of energy peak calculation

下载图片 查看所有图片

峰值点B(x2,y2)周围的点A(x1,y1)和C(x3,y3)存在y1>y3的关系。过C点和B点做直线l1,其与过B点垂线的夹角为α,根据能量对称分布可知,存在另外一条直线l2l1关于峰值点P的垂线对称。因此,从A点以倾角为90°-α做直线l2l1P点,其中P点的横坐标xB点横坐标x2之差x-x2即为亚像素偏移量。

根据图3可知,存在两个几何关系,用公式表示如下:

x3-xy-y3=x-x1y-y1y-y3x3-x=y2-y3x3-x2(5)

通过对(5)式进行推导化简,可得一元二次方程:

2(y3-y2)x2+(10y2-y1-9y3)x+(3y1-12y2+9y3)=0(6)

(6)式可以简化为

ax2+bx+c=0,(7)

式中:a=2(y3-y2);b=10y2-y1-9y3;c=3y1-12y2+9y3。则(7)式根据一元二次方程解可得

x=-b±b2-4ac2a,(8)

其中,满足x1<x<x2的解即为所求。

同理,当峰值点B(x2,y2)周围的点A(x1,y1)和C(x3,y3)存在y1<y3的关系时,可得

2(y1-y2)x2+(6y2-7y1+y3)x+(5y1-4y2-y3)=0(9)

利用(7)~(8)式可求得(9)式的x值,其中满足x2<x<x3的解即为所求。

当峰值前面的值小于后面的值时,仅将x1x3的值调换,推导过程同上。特殊情况下,当峰值点B(x2,y2)周围的点A(x1,y1)和C(x3,y3)存在y1=y3的关系时,则认为影像块无偏移,即x=0。

2.3 卫星姿态复合验证平台颤振

2.3.1 基于波形叠加理论的卫星颤振复原

利用多光谱不同波段间的影像配准获得像方视差,能够探测到平台中存在的颤振,该颤振属于相对姿态变化。为了得到卫星平台绝对姿态的变化,需要采用基于波形叠加理论将相对姿态转化为绝对姿态。

图4所示,t1时刻,卫星b波段拍摄地面点O,经过L/v时间后,卫星a波段拍摄地面点O,此时的时间为t2(可知t2-t1=L/v),抖动探测的值实际为在t2-t1时间段内卫星平台发生的姿态相对抖动。探测结果可以表示[39]

g(t1)=f(t2)-f(t1),(10)

式中: f(t1)和f(t2)分别为t1t2时刻的绝对抖动量;g(t1)为t1时刻的相对抖动量。

根据波形的基本合成与分解理论,在相对抖动的振幅、频率、初相位、常值以及绝对抖动的频率已知的基础上,可以求解绝对抖动模型中的各个参数,(10)式中的各参数可以表示为

g(t1)=agcos(2πωt1+bg)f(t1)=afcos(2πωt1+bf)f(t2)=afcos(2πωt1+bf+Δbf),(11)

式中:afag为绝对抖动和相对抖动的振幅;bfbgt1时刻绝对抖动和相对抖动的初相位;Δbft2时刻相对于t1时刻初相位的变化量。

将(11)式代入(10)式,可以求得afbf,即:

af=ag[2-2cos(Δbf)]-12,(12)bf=sin-1agcosbg2afsinΔbf2-Δbf2(13)

图 4. 卫星平台抖动探测示意图。(a) t1时刻卫星b波段拍摄地面点O;(b) t2时刻卫星a波段拍摄地面点O

Fig. 4. Schematic of jitter detection of satellite platform. (a) b-band camera scanned ground point O at moment t1; (b) a-band camera scanned ground point O at moment t2

下载图片 查看所有图片

将(12)式代入(13)式,可进一步简化求解得到

bf=bg-π2-Δbf2(14)

2.3.2 基于联合滤波的姿态确定

星敏陀螺组合的定姿策略是姿态确定系统的一种可靠的方案,可以得到较高的精度[40]。在星敏陀螺联合定姿系统中,陀螺为系统提供相对姿态值,是主要的姿态敏感器,星敏为姿态确定提供绝对姿态值,一般作为陀螺的辅助姿态敏感器,通常利用星敏感器的测量值来修正陀螺的漂移误差等。

星敏的测量方程为

Z(t)=H(t)X(t)+V(t),(15)

式中:t为时刻;Z(t)为实际观测向量;H(t)为观测矩阵;X(t)为观测变量;V(t)为观测噪声方差阵。

陀螺的测量方程为

ωg=ω+b+ηg,(16)

式中:ωg为卫星相对惯性空间的转速在本体系中的实际值;ω为卫星相对惯性空间的转速在本体系中的理想值;b为常值漂移;ηg为均值为零的白噪声。

线性连续滤波状态方程为

X·(t)=F(t)X(t)+W(t),(17)

式中:F(t)= -[ω^×]-0.5I3×303×303×36×6,[ ω^×]为 ω^的对角阵, ω^=ωg- b^, b^b的估计值;W(t)= -0.5ηgηb6×3,ηb为均值为零的白噪声。

2.3.3 姿态与颤振相关性验证

通过高精度配准得到的平台颤振数据与利用EKF得到的姿态数据均可以反映平台的姿态变化,将两者之间的系统差值消除后,理论上两者具有较强的一致性。采用皮尔逊相关系数[41]验证颤振探测结果与姿态数据的相关性:

R(i,j)=C(i,j)C(i,i)C(j,j),(18)

式中:C为列向量ij的协方差矩阵。相关系数在R矩阵的副对角线上。

3 实验验证与分析

3.1 配准算法精度验证

采用模拟数据和在轨数据,通过逐像素的密集配准获取亚像素配准结果,与其他相位相关配准算法相比,验证所提配准算法(PC)的配准精度。这里的对比算法包括:基于抛物线拟合的相位相关配准(PF)、基于sinc函数拟合的相位相关配准(SC)、基于曲面拟合的相位相关配准(SF)、基于奇异值分解的相位相关配准(SVD)和基于上采样的相位相关配准(UP)。

模拟数据由更高分辨率的影像降采样获取,即在高分辨率影像上截取范围为第1行至第3nline行且第1列至第3nsample列的(1—3nline,1—3nsample)影像块,3倍降采样至(1—nline,1—nsample),作为左影像;在同一张高分辨率影像上截取范围为第2行至第3nline+1行且第2列至第3nsample+1列的(2—3nline+1,2—3nsample+1)影像块,3倍降采样至(1—nline,1—nsample),作为右影像。理论上,左右影像对的逐像素行列方向视差真值为1/3 pixel,能够较好地评价亚像素配准精度。模拟影像对的尺寸为600 pixel×200 pixel(nline=600,nsample=200),理论影像偏移为1/3 pixel。采用6种配准算法获得视差图,为了直观显示,消除视差中的理论偏移,得到如图5所示的配准误差图。

图 5. 模拟数据配准误差图。(a) PC;(b) PF;(c) SC;(d) SF;(e) SVD;(f) UP

Fig. 5. Images of registration error acquired form simulation data. (a) PC; (b) PF; (c) SC; (d) SF; (e) SVD; (f) UP

下载图片 查看所有图片

图5可以看出,PC得到的视差整体分布均匀。为了定量获取配准误差,计算配准误差的均值和均方根误差,结果如表2所示,可见,与其他几种算法相比,所提算法的均值和均方根误差(RMSE)最小,具有较大的精度优势。

表 2. 模拟数据配准误差统计值

Table 2. Statistics of registration error acquired form simulation data

AlgorithmError /pixel
MeanRMSE
PC-0.0070.046
PF0.0680.088
SC0.0320.060
SF0.0690.089
SVD0.1430.156
UP-0.0780.085

查看所有表

将6种配准算法应用到在轨数据中,对比各个算法对平台微小颤振引起的像方偏移的探测能力。理论上,卫星在轨飞行期间,平台的颤振平滑性较好,因此探测结果的平滑性可以作为衡量配准精度的一种方法。实验随机选取一景多光谱数据,6种算法的颤振探测结果如图6所示。可见,相较于其他几种算法,PC探测结果具有较好的平滑性,能够反映平台的平滑运动特性。

图 6. 不同算法的在轨数据颤振探测曲线图

Fig. 6. Jitter curves detected from on-orbit data using different algorithms

下载图片 查看所有图片

所提算法具有较高的配准精度,能够有效获取卫星平台颤振引起的视差,为资源三号02星平台的颤振探测提供了技术参考。

3.2 卫星平台颤振探测实验

3.2.1 实验方案

基于所提算法探测资源三号02星的平台颤振,设计了如图7所示的实验方案。选取多光谱分片CCD影像对(选定CCD1和CCD2的蓝绿谱段),采用基于能量对称的相位相关配准算法获得影像对的视差图,对同一行视差图求均值,计算所有列,得到配准视差曲线,采用卫星姿态叠加理论将相对姿态转化为绝对姿态。卫星姿态确定方法采用EKF方法对星敏和陀螺数据联合滤波,得到高精度的卫星姿态数据。验证视差图得到的姿态与星敏陀螺定姿结果的一致性,最后利用快速傅里叶变换求解平台的颤振频率与振幅。

3.2.2 实验结果及分析

选取2016年7月16日拍摄的718轨108景、2016年8月28日拍摄的1379轨235景、2018年6月7日拍摄的11229轨268景和2018年6月16日拍摄的11365轨257景进行实验。每景多光谱影像包含3组分片CCD影像,每组分片CCD影像由蓝、绿、红和近红外4个谱段组成。选取第1组分片CCD的蓝谱段和绿谱段作为实验数据,采用相位相关配准算法获取视差图,4景影像视差如图8所示。

图 7. 实验方案

Fig. 7. Experimental scheme

下载图片 查看所有图片

图 8. 蓝绿谱段间的影像视差图。(a) 718轨;(b) 1379轨;(c) 11229轨;(d) 11365轨

Fig. 8. Parallax images between blue and green spectra. (a) Track 718; (b) track 1379; (c) track 11229; (d) track 11365

下载图片 查看所有图片

通过影像配准视差图可以直观地发现,影像由于姿态颤振引起的视差具有较明显的规律性。为了进一步定量探测卫星平台的颤振情况,逐行求影像配准视差图的均值,将视差图转化为便于数据分析的二维相对视差曲线图。由于相对视差曲线图仅记录卫星平台在短时间间隔内的相对姿态,为了能有效反应卫星平台的绝对姿态,需要采用(12)式和(14)式将相对视差曲线转化为绝对姿态变化曲线。

为了验证多光谱影像探测颤振的可靠性,采用EKF联合处理原始星敏陀螺数据,将获得的定姿结果作为复合参考数据,依据颤振探测值和姿态值的时间序列,复合叠加对比两者之间的差异。由于卫星平台在消除航偏角和地球曲率影响等过程中引入了线性变化量,故而这里利用一阶多项式拟合抑制姿态数据中部分线性的变化量。复合验证实验结果如图9所示。

光滑曲线为探测得到的平台颤振曲线,折线中的数据点为星敏陀螺联合滤波得到的姿态数据。结合两列数据的相关系数计算结果(图9)可以看出,卫星姿态数据与平台颤振探测曲线具有很高的一致性,验证了探测结果的可靠性。采用快速傅里叶变换对4景影像探测到的颤振曲线进行分析,可以得到资源三号02星卫星平台的颤振信息,如表3所示。

图 9. 卫星姿态数据复合平台颤振图。(a) 718轨;(b) 1379轨;(c) 11229轨;(d) 11365轨

Fig. 9. Satellite attitude data verify platform jitter. (a) Track 718; (b) track 1379; (c) track 11229; (d) track 11365

下载图片 查看所有图片

表 3. 实验数据的颤振信息

Table 3. Jitter information for experimental data

Track IDFrequency /HzAmplitude /s
7180.630.99
13790.631.12
112290.650.41
113650.650.97

查看所有表

根据探测结果可知,资源三号02星卫星平台存在的颤振为0.63~0.65 Hz,振幅为0.41″~1.12″,且具有一定的随机性。

4 结论

本课题组提出了一种基于能量对称分布的相位相关配准算法,该算法的配准精度可达0.05 pixel。通过匹配多光谱影像不同谱段的CCD影像,获得了短时间内像方视差变化信息,用以探测资源三号02星平台的颤振信息,采用星敏陀螺数据联合滤波得到的姿态数据作为参考复合数据,验证了多光谱影像配准得到的平台颤振与姿态数据具有较高的一致性,明确了颤振探测方法的可靠性。首次得出资源三号02星平台存在频率为0.63~0.65Hz、振幅为0.41″~1.12″的颤振。

参考文献

[1] Amberg V, Dechoz C, Bernard L, et al. In-flight attitude perturbances estimation: application to PLEIADES-HR satellites[J]. Proceedings of the SPIE, 2013, 8866: 886612.

    Amberg V, Dechoz C, Bernard L, et al. In-flight attitude perturbances estimation: application to PLEIADES-HR satellites[J]. Proceedings of the SPIE, 2013, 8866: 886612.

[2] Johnston J D, Thornton E A. Thermally induced dynamics of satellite solar panels[J]. Journal of Spacecraft and Rockets, 2000, 37(5): 604-613.

    Johnston J D, Thornton E A. Thermally induced dynamics of satellite solar panels[J]. Journal of Spacecraft and Rockets, 2000, 37(5): 604-613.

[3] Kirk R L. Howington-kraus E, Redding B, et al. High-resolution topomapping of candidate MER landing sites with Mars Orbiter Camera narrow-angle images[J]. Journal of Geophysical Research Atmospheres, 2003, 108(E12): 343-358.

    Kirk R L. Howington-kraus E, Redding B, et al. High-resolution topomapping of candidate MER landing sites with Mars Orbiter Camera narrow-angle images[J]. Journal of Geophysical Research Atmospheres, 2003, 108(E12): 343-358.

[4] AyoubF, LeprinceS, BinetR, et al. Influence of camera distortions on satellite image registration and change detectionapplications[C]//IGARSS2008-2008 IEEE International Geoscience and Remote Sensing Symposium, July 7-11, 2008, Boston, MA, USA. New York: IEEE, 2008: II-1072-II-1075.

    AyoubF, LeprinceS, BinetR, et al. Influence of camera distortions on satellite image registration and change detectionapplications[C]//IGARSS2008-2008 IEEE International Geoscience and Remote Sensing Symposium, July 7-11, 2008, Boston, MA, USA. New York: IEEE, 2008: II-1072-II-1075.

[5] Tong X H, Ye Z, Xu Y S, et al. Framework of jitter detection and compensation for high resolution satellites[J]. Remote Sensing, 2014, 6(5): 3944-3964.

    Tong X H, Ye Z, Xu Y S, et al. Framework of jitter detection and compensation for high resolution satellites[J]. Remote Sensing, 2014, 6(5): 3944-3964.

[6] Wang M, Fan C C, Pan J, et al. Image jitter detection and compensation using a high-frequency angular displacement method for Yaogan-26 remote sensing satellite[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 130: 32-43.

    Wang M, Fan C C, Pan J, et al. Image jitter detection and compensation using a high-frequency angular displacement method for Yaogan-26 remote sensing satellite[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 130: 32-43.

[7] IwataT, KawaharaT, MuranakaN, et al. High-bandwidth attitude determination using jitter measurements and optimal filtering[C]//AIAA Guidance, Navigation and Control Conference, August 10-13, 2009, Chicago, Illinois. Reston, VA: AIAA, 2009: 7349- 7369.

    IwataT, KawaharaT, MuranakaN, et al. High-bandwidth attitude determination using jitter measurements and optimal filtering[C]//AIAA Guidance, Navigation and Control Conference, August 10-13, 2009, Chicago, Illinois. Reston, VA: AIAA, 2009: 7349- 7369.

[8] Delevit JM, GreslouD, AmbergV, et al. Attitude assessment using pleiades-HR capabilities[J]. International Archives of the Photogrammetry, RemoteSensing and Spatial InformationSciences, 2012, XXXIX-B1: 525- 530.

    Delevit JM, GreslouD, AmbergV, et al. Attitude assessment using pleiades-HR capabilities[J]. International Archives of the Photogrammetry, RemoteSensing and Spatial InformationSciences, 2012, XXXIX-B1: 525- 530.

[9] Grodecki J, Dial G. Block adjustment of high-resolution satellite images described by rational polynomials[J]. Photogrammetric Engineering & Remote Sensing, 2003, 69(1): 59-68.

    Grodecki J, Dial G. Block adjustment of high-resolution satellite images described by rational polynomials[J]. Photogrammetric Engineering & Remote Sensing, 2003, 69(1): 59-68.

[10] Pan J, Che C B, Zhu Y, et al. Satellite jitter estimation and validation using parallax images[J]. Sensors, 2017, 17(1): 83.

    Pan J, Che C B, Zhu Y, et al. Satellite jitter estimation and validation using parallax images[J]. Sensors, 2017, 17(1): 83.

[11] Wang M, Zhu Y, Pan J. et al. Satellite jitter detection and compensation using multispectral imagery[J]. Remote Sensing Letters, 2016, 7(6): 513-522.

    Wang M, Zhu Y, Pan J. et al. Satellite jitter detection and compensation using multispectral imagery[J]. Remote Sensing Letters, 2016, 7(6): 513-522.

[12] Tong X H, Ye Z, Li L Y. et al. Detection and estimation of along-track attitude jitter from Ziyuan-3 three-line-array images based on back-projection residuals[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(8): 4272-4284.

    Tong X H, Ye Z, Li L Y. et al. Detection and estimation of along-track attitude jitter from Ziyuan-3 three-line-array images based on back-projection residuals[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(8): 4272-4284.

[13] Toyoshima M, Araki K. In-orbit measurements of short term attitude and vibrational environment on the Engineering Test Satellite VI using laser communication equipment[J]. Optical Engineering, 2001, 40(5): 827-832.

    Toyoshima M, Araki K. In-orbit measurements of short term attitude and vibrational environment on the Engineering Test Satellite VI using laser communication equipment[J]. Optical Engineering, 2001, 40(5): 827-832.

[14] 唐新明, 谢俊峰, 付兴科, 等. 资源三号02星激光测高仪在轨几何检校与试验验证[J]. 测绘学报, 2017, 46(6): 714-723.

    唐新明, 谢俊峰, 付兴科, 等. 资源三号02星激光测高仪在轨几何检校与试验验证[J]. 测绘学报, 2017, 46(6): 714-723.

    Tang X M, Xie J F, Fu X K, et al. ZY3-02 laser altimeter on-orbit geometrical calibration and test[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(6): 714-723.

    Tang X M, Xie J F, Fu X K, et al. ZY3-02 laser altimeter on-orbit geometrical calibration and test[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(6): 714-723.

[15] TakitaK, AokiT, SasakiY, et al. High-accuracy subpixel image registration based on phase-only correlayion[J]. IEICE Transactions on Fundamentals of Electronics, Communications and ComputerSciences, 2003, E86-A( 8): 1925- 1934.

    TakitaK, AokiT, SasakiY, et al. High-accuracy subpixel image registration based on phase-only correlayion[J]. IEICE Transactions on Fundamentals of Electronics, Communications and ComputerSciences, 2003, E86-A( 8): 1925- 1934.

[16] 唐玎, 涂丹, 甘亚莉. 基于相位相关和模板匹配的亚像素图像配准参数估计[J]. 微电子学与计算机, 2007, 24(12): 128-130.

    唐玎, 涂丹, 甘亚莉. 基于相位相关和模板匹配的亚像素图像配准参数估计[J]. 微电子学与计算机, 2007, 24(12): 128-130.

    Tang D, Tu D, Gan Y L. The subpixel estimation of image registration parameter based on the method of phase correlation and template matching[J]. Microelectronics & Computer, 2007, 24(12): 128-130.

    Tang D, Tu D, Gan Y L. The subpixel estimation of image registration parameter based on the method of phase correlation and template matching[J]. Microelectronics & Computer, 2007, 24(12): 128-130.

[17] Tong X H, Ye Z, Xu Y S, et al. A novel subpixel phase correlation method using singular value decomposition and unified random sample consensus[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(8): 4143-4156.

    Tong X H, Ye Z, Xu Y S, et al. A novel subpixel phase correlation method using singular value decomposition and unified random sample consensus[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(8): 4143-4156.

[18] 范大昭, 申二华, 李禄, 等. 基于相位相关的小基高比影像匹配方法[J]. 测绘科学技术学报, 2013, 30(2): 154-157.

    范大昭, 申二华, 李禄, 等. 基于相位相关的小基高比影像匹配方法[J]. 测绘科学技术学报, 2013, 30(2): 154-157.

    Fan D Z, Shen E H, Li L, et al. Small baseline stereo matching method based on phase correlation[J]. Journal of Geomatics Science and Technology, 2013, 30(2): 154-157.

    Fan D Z, Shen E H, Li L, et al. Small baseline stereo matching method based on phase correlation[J]. Journal of Geomatics Science and Technology, 2013, 30(2): 154-157.

[19] 王彩玲, 程勇, 赵春霞, 等. 局部相位相关用于图像亚像素级配准技术研究[J]. 中国图象图形学报, 2011, 16(3): 427-432.

    王彩玲, 程勇, 赵春霞, 等. 局部相位相关用于图像亚像素级配准技术研究[J]. 中国图象图形学报, 2011, 16(3): 427-432.

    Wang C L, Cheng Y, Zhao C X, et al. Robust subpixel image registration technique based on local phase correlation[J]. Journal of Image and Graphics, 2011, 16(3): 427-432.

    Wang C L, Cheng Y, Zhao C X, et al. Robust subpixel image registration technique based on local phase correlation[J]. Journal of Image and Graphics, 2011, 16(3): 427-432.

[20] 申二华. 小基高比条件下高精度影像匹配技术研究[D]. 郑州: 解放军信息工程大学, 2013: 41- 66.

    申二华. 小基高比条件下高精度影像匹配技术研究[D]. 郑州: 解放军信息工程大学, 2013: 41- 66.

    Shen EH. Research on small baseline stereo matching with high precision[D]. Zhengzhou: The PLA Information Engineering University, 2013: 41- 66.

    Shen EH. Research on small baseline stereo matching with high precision[D]. Zhengzhou: The PLA Information Engineering University, 2013: 41- 66.

[21] 童小华, 叶真, 刘世杰. 高分辨率卫星颤振探测补偿的关键技术方法与应用[J]. 测绘学报, 2017, 46(10): 1500-1508.

    童小华, 叶真, 刘世杰. 高分辨率卫星颤振探测补偿的关键技术方法与应用[J]. 测绘学报, 2017, 46(10): 1500-1508.

    Tong X H, Ye Z, Liu S J. Essential technology and application of jitter detection and compensation for high resolution satellites[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1500-1508.

    Tong X H, Ye Z, Liu S J. Essential technology and application of jitter detection and compensation for high resolution satellites[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1500-1508.

[22] Savino R, Lappa M. Assessment of thermovibrational theory: application to g-jitter on the Space Station[J]. Jounal of Spacecraft and Rockets, 1971, 40(2): 201-210.

    Savino R, Lappa M. Assessment of thermovibrational theory: application to g-jitter on the Space Station[J]. Jounal of Spacecraft and Rockets, 1971, 40(2): 201-210.

[23] 董瑶海. 航天器微振动: 理论与实践[M]. 北京: 中国宇航出版社, 2015: 1- 11.

    董瑶海. 航天器微振动: 理论与实践[M]. 北京: 中国宇航出版社, 2015: 1- 11.

    Dong YH. Spacecraft micro vibration: theory and practice[M]. Beijing: China Astronautic Publishing House, 2015: 1- 11.

    Dong YH. Spacecraft micro vibration: theory and practice[M]. Beijing: China Astronautic Publishing House, 2015: 1- 11.

[24] IwasakiA. Detection and estimation of satellite attitude jitter using remote sensing imagery[M] //Hall J. Advances in Spacecraft Technologies. Rijeka: InTech, 2011: 257- 272.

    IwasakiA. Detection and estimation of satellite attitude jitter using remote sensing imagery[M] //Hall J. Advances in Spacecraft Technologies. Rijeka: InTech, 2011: 257- 272.

[25] Teshima Y, Iwasaki A. Correction of attitude fluctuation of terra spacecraft using ASTER/SWIR imagery with parallax observation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(1): 222-227.

    Teshima Y, Iwasaki A. Correction of attitude fluctuation of terra spacecraft using ASTER/SWIR imagery with parallax observation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(1): 222-227.

[26] Mumtaz R, Palmer P. Attitude determination by exploiting geometric distortions in stereo images of DMC camera[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(3): 1601-1625.

    Mumtaz R, Palmer P. Attitude determination by exploiting geometric distortions in stereo images of DMC camera[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(3): 1601-1625.

[27] Gwinner K, Scholten F, Preusker F, et al. Topography of Mars from global mapping by HRSC high-resolution digital terrain models and orthoimages: characteristics and performance[J]. Earth and Planetary Science Letters, 2010, 294(3/4): 506-519.

    Gwinner K, Scholten F, Preusker F, et al. Topography of Mars from global mapping by HRSC high-resolution digital terrain models and orthoimages: characteristics and performance[J]. Earth and Planetary Science Letters, 2010, 294(3/4): 506-519.

[28] Gläser P, Haase I, Oberst J, et al. Co-registration of laser altimeter tracks with digital terrain models and applications in planetary science[J]. Planetary and Space Science, 2013, 89: 111-117.

    Gläser P, Haase I, Oberst J, et al. Co-registration of laser altimeter tracks with digital terrain models and applications in planetary science[J]. Planetary and Space Science, 2013, 89: 111-117.

[29] MattsonS, BartelsA, BoydA, et al. Continuing analysis of spacecraft jitter in LROC-NAC[C]//Proceedings of 42nd Lunar and Planetary Science Conference, March 7-11, 2011, Woodlands, Texas, USA . [S.l.: s.n.], 2011, 1608: 2756.

    MattsonS, BartelsA, BoydA, et al. Continuing analysis of spacecraft jitter in LROC-NAC[C]//Proceedings of 42nd Lunar and Planetary Science Conference, March 7-11, 2011, Woodlands, Texas, USA . [S.l.: s.n.], 2011, 1608: 2756.

[30] Ran Q, Chi Y B, Wang Z Y. Property and removal of jitter in Beijing-1 small satellite panchromatic images[J]. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2008, 37: 929-933.

    Ran Q, Chi Y B, Wang Z Y. Property and removal of jitter in Beijing-1 small satellite panchromatic images[J]. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2008, 37: 929-933.

[31] TadonoT, IshidaH, OdaF, et al. Precise global DEM generation by ALOS PRISM[J]. ISPRS Annals of Photogrammetry, RemoteSensing and Spatial InformationSciences, 2014, II-4: 71- 76.

    TadonoT, IshidaH, OdaF, et al. Precise global DEM generation by ALOS PRISM[J]. ISPRS Annals of Photogrammetry, RemoteSensing and Spatial InformationSciences, 2014, II-4: 71- 76.

[32] TakakuJ, TadonoT. High resolution DSM generation from ALOS PRISM-processing status and influence of attitude fluctuation[C] //2010 IEEE International Geoscience and Remote Sensing Symposium, July 25-30, 2010, Honolulu, HI, USA. New York: IEEE, 2010: 4228- 4231.

    TakakuJ, TadonoT. High resolution DSM generation from ALOS PRISM-processing status and influence of attitude fluctuation[C] //2010 IEEE International Geoscience and Remote Sensing Symposium, July 25-30, 2010, Honolulu, HI, USA. New York: IEEE, 2010: 4228- 4231.

[33] Lee D H, Yang J Y, Seo D C, et al. Image restoration of the asymmetric point spread function of a high-resolution remote sensing satellite with time-delayed integration[J]. Advances in Space Research, 2011, 47(4): 690-701.

    Lee D H, Yang J Y, Seo D C, et al. Image restoration of the asymmetric point spread function of a high-resolution remote sensing satellite with time-delayed integration[J]. Advances in Space Research, 2011, 47(4): 690-701.

[34] MattsonS, RobinsonM, McewenA, et al. Early assessment of spacecraft jitter in LROC-NAC[C]//Proceedings of 41st Lunar and Planetary Institute Science Conference, March 1-5, 2010, Woodlands, Texas, USA. [S.l.: s.n.], 2010, 1533: 1871.

    MattsonS, RobinsonM, McewenA, et al. Early assessment of spacecraft jitter in LROC-NAC[C]//Proceedings of 41st Lunar and Planetary Institute Science Conference, March 1-5, 2010, Woodlands, Texas, USA. [S.l.: s.n.], 2010, 1533: 1871.

[35] Sun T, Long H, Liu B C, et al. Application of attitude jitter detection based on short-time asynchronous images and compensation methods for Chinese mapping satellite-1[J]. Optics Express, 2015, 23(2): 1395-1410.

    Sun T, Long H, Liu B C, et al. Application of attitude jitter detection based on short-time asynchronous images and compensation methods for Chinese mapping satellite-1[J]. Optics Express, 2015, 23(2): 1395-1410.

[36] 孙韬, 龙辉, 赵冬, 等. 基于五谱段合一多光谱相机影像的卫星颤振检测和补偿[J]. 光学学报, 2014, 34(7): 0728005.

    孙韬, 龙辉, 赵冬, 等. 基于五谱段合一多光谱相机影像的卫星颤振检测和补偿[J]. 光学学报, 2014, 34(7): 0728005.

    Sun T, Long H, Zhao D, et al. Detection and compensation of satellite flutter based on image from multispectral camera with five spectral combinations[J]. Acta Optica Sinica, 2014, 34(7): 0728005.

    Sun T, Long H, Zhao D, et al. Detection and compensation of satellite flutter based on image from multispectral camera with five spectral combinations[J]. Acta Optica Sinica, 2014, 34(7): 0728005.

[37] 朱映, 王密, 潘俊, 等. 利用多光谱影像检测资源三号卫星平台震颤[J]. 测绘学报, 2015, 44(4): 399-406, 413.

    朱映, 王密, 潘俊, 等. 利用多光谱影像检测资源三号卫星平台震颤[J]. 测绘学报, 2015, 44(4): 399-406, 413.

    Zhu Y, Wang M, Pan J, et al. Detection of ZY-3 satellite platform jitter using multi-spectral imagery[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(4): 399-406, 413.

    Zhu Y, Wang M, Pan J, et al. Detection of ZY-3 satellite platform jitter using multi-spectral imagery[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(4): 399-406, 413.

[38] Heid T, Kääb A. Evaluation of existing image matching methods for deriving glacier surface displacements globally from optical satellite imagery[J]. Remote Sensing of Environment, 2012, 118: 339-355.

    Heid T, Kääb A. Evaluation of existing image matching methods for deriving glacier surface displacements globally from optical satellite imagery[J]. Remote Sensing of Environment, 2012, 118: 339-355.

[39] Tong X H, Xu Y S, Ye Z, et al. Attitude oscillation detection of the ZY-3 satellite by using multispectral parallax images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(6): 3522-3534.

    Tong X H, Xu Y S, Ye Z, et al. Attitude oscillation detection of the ZY-3 satellite by using multispectral parallax images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(6): 3522-3534.

[40] 杨锋, 周宗锡, 刘曙光. 基于星敏感器/光纤陀螺的卫星定姿算法[J]. 控制工程, 2006, 13(4): 374-376, 393.

    杨锋, 周宗锡, 刘曙光. 基于星敏感器/光纤陀螺的卫星定姿算法[J]. 控制工程, 2006, 13(4): 374-376, 393.

    Yang F, Zhou Z X, Liu S G. Satellite attitude determination algorithm based on star-sensor and FOG[J]. Control Engineering of China, 2006, 13(4): 374-376, 393.

    Yang F, Zhou Z X, Liu S G. Satellite attitude determination algorithm based on star-sensor and FOG[J]. Control Engineering of China, 2006, 13(4): 374-376, 393.

[41] PearsonK, Note onregression and inheritance in the case of two parents[J]. Proceedings of the Royal Society of London, 1895, 58: 240- 242.

    PearsonK, Note onregression and inheritance in the case of two parents[J]. Proceedings of the Royal Society of London, 1895, 58: 240- 242.

谢俊峰, 莫凡, 王怀, 李响, 朱红. 基于能量对称分布相位相关配准的资源三号02星颤振探测[J]. 光学学报, 2019, 39(6): 0628003. Junfeng Xie, Fan Mo, Huai Wang, Xiang Li, Hong Zhu. Jitter Detection of ZY3-02 Satellite Platform Using Phase-Correlation Registration Based on Symmetrical Energy Distribution[J]. Acta Optica Sinica, 2019, 39(6): 0628003.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!