强激光与粒子束, 2016, 28 (4): 045013, 网络出版: 2016-04-01  

面向等离子体合成射流应用的微秒脉冲源研制

Compact microsecond-pulse generator for plasma synthetic jet
王磊 1,2章程 1,3罗振兵 4王林 4严萍 1,3邵涛 1,3
作者单位
1 中国科学院 电工研究所, 北京 100190
2 中国科学院大学, 北京 100039
3 中国科学院 电力电子与电气驱动重点实验室, 北京 100190
4 国防科学技术大学 航天科学与工程学院, 长沙 410073
摘要
为了产生高能等离子体合成射流,设计了一台面向等离子体合成射流应用的微秒脉冲源,输出电压为10 kV,重复频率为100 Hz,可承受高达250 A的放电电流。详细介绍了微秒脉冲源的工作原理,比较了不同放电电容对脉冲变压器原边电流及输出电压的影响。进一步将所设计的微秒脉冲源成功应用于等离子体合成射流实验中,研究了不同间距对等离子体合成射流的影响,比较了有无放电电容条件下的能量消耗率。实验结果表明: 不同放电电容在相同激励器间距的条件下,击穿电压基本相同; 击穿电压随激励器间距增大而增大。有放电电容能产生较大的放电电流,且电流值随电容值的增大而增大。有放电电容条件下的能量消耗率比无放电电容要高,易于产生高能的等离子体合成射流。
Abstract
In order to generate a high-energy plasma synthetic jet, a compact microsecond-pulse power supply is developed and tested. The maximum output voltage is 10 kV with a pulse repetition rate of 100 Hz and the generator can withstand a discharge current with an amplitude of 250 A. Moreover, the working principle of the generator is introduced and the effect of different capacitor on the primary current and output voltage is compared. Furthermore, the designed generator is successfully used for generating plasma synthetic jet. The effect of the gap distance on the plasma synthetic jet is analyzed. The ratio of dissipation energy at different discharge capacitors is compared. The results show that: The breakdown voltage for different discharge capacitors has a similar value at the same gap distance. The breakdown voltage increases with the gap distance. In addition, large discharge current can be generated when the discharge capacitor is used. The discharge current increases with the value of the discharge capacitor. The ratio of dissipation energy is higher in the case with discharge capacitor than that in the case without discharge capacitor. Under such conditions, it is easy to generate a high-energy plasma synthetic jet.
参考文献

[1] 吴云, 李应红. 等离子体流动控制与点火助燃研究进展[J]. 高电压技术, 2014, 40(7): 2024-2038.(Wu Yun, Li Yinghong. Progress in research of plasma-assisted flow control, ignition and combustion. High Voltage Engineering, 2014, 40(7): 2024-2038)

[2] 姜慧, 章程, 邵涛, 等. 纳秒脉冲表面介质阻挡放电特性实验研究[J]. 强激光与粒子束,2012, 24(3): 592-596.(Jiang Hui, Zhang Cheng, Shao Tao, et al. Experimental study on characteristics of nanosecond-pulse surface dielectric barrier discharge. High PowerLaser and Particle Beams, 2012, 24(3): 592-596)

[3] 周杨, 姜慧, 章程, 等. 纳秒和微秒脉冲激励表面介质阻挡放电特性对比[J]. 高电压技术, 2014, 40(10): 3091-3097.(Zhou Yang, Jiang Hui, Zhang Cheng, et al. Comparison of discharge characteristics in surface dielectric barrier discharge driven by nanosecond and microsecond pulsed powers. High Voltage Engineering, 2014, 40(10): 3091-3097)

[4] Che Xueke, Shao Tao, Nie Wansheng, et al. Numerical simulation on a nanosecond-pulse surface dielectric barrier discharge actuator in near space[J]. Journal of Physics D: Applied Physics, 2012, 45: 145201.

[5] Zong Haohua, Wu Yun, Li Yinghong, et al. Analytic model and frequency characteristics of plasma synthetic jet actuator[J]. Physics of Fluids, 2015, 27: 027105.

[6] Zhu Yifei, Wu Yun, Jia Min, et al. Influence of positive slopes on ultrafast heating in an atmospheric nanosecond-pulsed plasma synthetic jet[J]. Plasma Sources Science and Technology, 2015, 24(1): 15007-15019.

[7] Wang Lin, Luo Zhenbing, Xia Zhixun, et al. Review of actuators for high speed active flow control[J]. Science China Technological Sciences, 2012, 55(8): 2225-2240.

[8] 王林, 罗振兵, 夏智勋, 等. 等离子体合成射流能量效率及工作特性研究[J]. 物理学报, 2013, 62: 125207.(Wang Lin, Luo Zhenbing, Xia Zhixun, et al. Energy efficiency and performance characteristics of plasma synthetic jet. Acta Physica Sinica, 2013, 62: 125207)

[9] Shao Tao, Zhang Cheng, Wang Ruixue, et al. Comparison of atmospheric-pressure He and Ar plasma jets driven by microsecond pulses[J]. IEEE Trans Plasma Sci, 2015, 43(3): 726-732.

[10] Shao Tao, Huang Weiming, Li Wenfeng, et al. A cascaded microsecond-pulse generator for discharge applications[J]. IEEE Trans Plasma Sci, 2014, 42(6): 1721-1728.

[11] Shao Tao, Zhang Cheng, Zhou Yixiao, et al. Diffuse discharges in open air sustained by microsecond and nanosecond pulses[J]. IEEE Trans Plasma Sci, 2014, 42(10): 2408-2409.

[12] Shao Tao, Zhang Dongdong, Yu Yang, et al. A compact repetitive unipolar nanosecond-pulse generator for dielectric barrier discharge application[J]. IEEE Trans Plasma Sci, 2010, 38(7): 1651-1655.

[13] Zhang Cheng, Shao Tao, Wang Ruixue, et al. A comparison between characteristics of atmospheric-pressure plasma jets sustained by nanosecond- and microsecond-pulse generators in helium[J]. Physics of Plasmas, 2014, 21: 103505.

[14] 卢新培, 严萍, 任春生, 等. 大气压脉冲放电等离子体的研究现状与展望[J]. 中国科学: 物理学 力学 天文学, 2011, 41(7): 801-815.(Lu Xinpei, Yan Ping, Ren Chunsheng, et al. Review on atmospheric pressure pulsed DC discharge. Science TIA Sinica: Physica, Mechanica & Astronomica, 2011, 41(7): 801-815)

[15] 黄伟民, 邵涛, 张东东, 等. 小型高压重复频率微秒脉冲电源及其放电应用[J]. 强激光与粒子束, 2014, 26: 045044.(Huang Weimin, Shao Tao, Zhang Dongdong, et al. A compact high voltage microsecond pulse power supply and its discharge application. High Power Laser and Particle Beams, 2014, 26: 045044)

[16] 巩春志, 田修波, 曹珍恩, 等. 10 kV 等离子体表面改性高压脉冲电源[J]. 强激光与粒子束, 2007, 19(11): 1927-1930.(Gong Chunzhi, Tian Xiubo, Cao Zhen’en, et al. 10 kV high voltage pulse power supply for plasma surface modification. High Power Laser and Particle Beams, 2007, 19(11): 1927-1930)

[17] Narayanaswamy V, Raja L L, Clemens N T. Characterization of a high-frequency pulsed-plasma jet actuator for supersonic flow control[J]. AIAA journal, 2010, 48(2): 297-305.

[18] Utkin Y G, Keshav S, Kim J H, et al. Development and use of localized arc filament plasma actuators for high-speed flow control[J]. Journal of Physics D: Applied Physics, 2007, 40(3): 685.

[19] Belinger A, Naudé N, Cambronne J P, et al. Plasma synthetic jet actuator: electrical and optical analysis of the discharge[J]. Journal of Physics D: Applied Physics, 2014, 47: 345202.

[20] 贾敏, 梁华, 宋慧敏, 等. 纳秒脉冲等离子体合成射流的气动激励特性[J]. 高电压技术, 2011, 37(6): 1493-1498. (Jia Min, Liang Hua, Song Huimin, et al. Characteristic of the spark discharge plasma jet driven by nanosecond pulses. High Voltage Engineering, 2011, 37(6): 1493-1498)

[21] 王林, 夏智勋, 罗振兵, 等. 两电极等离子体合成射流激励器工作特性研究[J]. 物理学报, 2014, 63: 194702.(Wang Lin, Xia Zhixun, Luo Zhenbing, et al. Experimental study on the characteristics of a two-electrode plasma synthetic jet actuator. Acta Physica Sinica, 2014, 63: 194702)

[22] Wang Lin, Xia Zhixun, Luo Zhenbing, et al. Three-electrode plasma synthetic jet actuator for high-speed flow control[J]. AIAA Journal, 2013, 52(4): 879-882.

[23] 李文峰, 邵涛, 张东东, 等. 重复频率纳秒脉冲源程控脉冲发生器[J]. 强激光与粒子束, 2012, 24(5): 1186-1190.(Li Wenfeng, Shao Tao, Zhang Dongdong, et al. Program-controlled pulse generator for repetitive nanosecond-pulse source. High Power Laser and Particle Beams, 2012, 24(5): 1186-1190)

王磊, 章程, 罗振兵, 王林, 严萍, 邵涛. 面向等离子体合成射流应用的微秒脉冲源研制[J]. 强激光与粒子束, 2016, 28(4): 045013. Wang Lei, Zhang Cheng, Luo Zhenbing, Wang Lin, Yan Ping, Shao Tao. Compact microsecond-pulse generator for plasma synthetic jet[J]. High Power Laser and Particle Beams, 2016, 28(4): 045013.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!