光学学报, 2011, 31 (6): 0618002, 网络出版: 2011-05-18   

近紫外波段频分复用荧光显微探测技术研究

Near UV-Band Frequency Division Multiplexing Detecting Technique with Fluorescence Microscopy
作者单位
上海理工大学上海市现代光学重点实验室, 上海 200093
摘要
分析了多路频分复用并行显微荧光探测的基本原理,即把激发光分成多束,对每一束进行不同频率调制,聚焦到生物样品的不同位置,激发产生相应频率的荧光信号,再对光电倍增管(PMT)接收的荧光信号进行分频解调,实现实时、并行和高分辨率的探测技术。搭建了激发光源为405 nm近紫外激光的双路方波调制荧光显微探测系统,实验探测了老鼠神经细胞显微形态,分析解调了双点荧光能量随时间变化的曲线。并研究了荧光显微成像系统放大率、时间分辨率等技术参数,还通过数值分析给出了避免各通道间信号串扰的条件。
Abstract
The principles of the microscopic fluorescence detection with frequency division multiplexing paralleling detection technology (FDMPD) is analysed. In the FDMPD system, the exciting laser beam is firstly divided into the multi-beams, and each beam is modulated with the individual carrying frequencies. The multi-beams exciting laser is focused on the surface of target cells to generate the multichannel fluorescent signals with corresponding carrying frequencies. Photomultiplier tube collected the fluorescent signals and transmitted the signal into the computer. Then individual channel fluorescent signal which varies with the time can be demodulated in a parallel and a high-resolution way. Employing 405 nm exciting laser sources, the two channel FDMPD system is constructed. The experiments explored micro-morphology of mouse nerve cells sample and demodulated the two channel fluorescence curves varying with the time. Furthermore, the basic parameters including the magnification, time resolution ability etc are analyzed, and the basic conditions to avoid the cross talk among multiply channels are also put forward.
参考文献

[1] Michael J. Berridge, Peter Lipp, Martin D. Bootman. The versatility and universality of calcium signaling [J]. Nature Reviews Molecular Cell Biology, 2000, 1: 11~21

[2] 白永强, 唐爱辉, 王世强 等. 单个心肌细胞内钙波的微观动力学研究[J]. 物理学报, 2007, 56(6): 3607~3612

    Bai Yongqiang, Tang Aihui, Wang Shiqiang et al.. Micro-dynamics of Ca2+ signals in single heart cells[J]. Acta Physica Sinica, 2007, 56(6): 3607~3612

[3] Thomas A. Pologruto, Ryohei Yasuda, Karel Svobodal. Monitoring neural activity and (Ca2+) with genetically Encoded Ca2+ indicators[J]. J. Neuroscience, 2004, 24(43): 9572~9579

[4] Silke D. Meier, Yury Kovalchuk, Christine R. Rose. Properties of the new fluorescent Na+ indicator CoroNa green: comparison with SBFI and confocal Na+ imaging [J]. J. Neuroscience Methods, 2006, 155(2): 251~529

[5] Anthony Persechini, Jennifer A. Lynch, Valerie A. Romoser. Novel fluorescent indicator proteins for monitoring free intracellular Ca2+ [J]. Cell Calcium, 1997, 22(3): 209~216

[6] Jeffrey J. L. Carson, Frank S. Prato. Fluorescence spectrophotometer for the real time detection of cytosolic free calcium from cell suspensions during exposure to extremely low frequency magnetic fields[J]. Rev. Sci. Instrum., 1996, 67(12): 4336~4339

[7] G. Y. Fan, H. Fujisaki, A. Miyawaki et al.. Video-rate scanning two-photon excitation fluorescence microscopy and ratio imaging with cameleons [J]. Biophysical Journal, 1999, 76(5): 2412~2420

[8] W. R. Potter. In vivo fluorescence photometer. US Patent,1997,No:5,205,291

[9] Katsumasa Fujita, Minoru Kobayashi, Shogo Kawano et al.. High-resolution confocal microscopy by saturated excitation of fluorescence [J]. Phys. Rev. Lett., 2007, 99(22): 228105~228108

[10] 王成, 方宝英, 蔡文杰 等. 单细胞水平的光纤共焦后向散射显微光谱[J]. 中国激光, 2009, 36(10): 2635~2641

    Wang Cheng, Fang Baoying, Cai Wenjie et al.. Fiber confocal back-scattering micro-spectrum in single biology cellular scale [J]. Chinese J. Lasers, 2009, 36(10): 2635~2641

[11] Fei Wu, Xueqian Zhang, Joseph Y et al.. Frequency division multiplexed multichannel high-speed fluorescence confocal microscope[J]. Biophysical Journal, 2006, 91(6): 2290~2296

[12] 周慧, 董泽, 曹子峥 等. 正交频分复用信号的全光波长变换性能研究[J]. 光学学报, 2010, 30(4): 959~964

    Zhou Hui, Dong Ze, Cao Zizheng et al.. All-optical wavelength conversion for orthogonal frequency division multiplexing optical signal [J]. Acta Optica Sinica, 2010, 30(4): 959~964

[13] 张静, 邱昆, 李永刚 等. 自适应调制光正交频分复用系统的可变长保护间隔研究[J]. 光学学报, 2009, 29(2): 323~326

    Zhang Jing, Qiu Kun, Li Yonggang et al.. Adaptively modulated optical orthogonal frequency division multiplexing system with variable guard interval [J]. Acta Optica Sinica, 2009, 29(2): 323~326

[14] 王之江, 顾培森. 实用光学技术手册.机械工业出版社 [M]. 北京:机械工业出版社, 2007. 774~775

    Wang Zhijiang, Gu Peishen. Handbook of Practical Optical Technology [M]. Beijing: China Machine Press, 2007. 774~775

[15] S. Smale, D. X. Zhou. Shannon sampling and function reconstruction from point values [J]. Bulletin-American Mathematical Society, 2004, 41(3): 279~305

张运波, 郑继红, 蒋妍梦, 侯文玫, 张仁杰, 庄松林. 近紫外波段频分复用荧光显微探测技术研究[J]. 光学学报, 2011, 31(6): 0618002. Zhang Yunbo, Zheng Jihong, Jiang Yanmeng, Hou Wenmei, Zhang Renjie, Zhuang Songlin. Near UV-Band Frequency Division Multiplexing Detecting Technique with Fluorescence Microscopy[J]. Acta Optica Sinica, 2011, 31(6): 0618002.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!