Journal of Innovative Optical Health Sciences, 2011, 4 (3): 279, Published Online: Jan. 10, 2019  

IMAGING REDOX STATE HETEROGENEITY WITHIN INDIVIDUAL EMBRYONIC STEM CELL COLONIES

Author Affiliations
1 Molecular Imaging Laboratory, Department of Radiology University of Pennsylvania, School of Medicine Philadelphia, PA 19104, USA
2 Britton Chance Laboratory of Redox Imaging Johnson Research Foundation Department of Biochemistry and Biophysics University of Pennsylvania, School of Medicine Philadelphia, PA 19104, USA
3 Institute for Regenerative Medicine and Department of Cell and Developmental Biology University of Pennsylvania, School of Medicine Philadelphia, PA 19104, USA
4 Institute of Translational Medicine and Therapeutics University of Pennsylvania, Philadelphia, PA 19104, USA
Abstract
Redox state mediates embryonic stem cell (ESC) differentiation and thus offers an important complementary approach to understanding the pluripotency of stem cells. NADH redox ratio (NADH/(Fp+ NADH)), where NADH is the reduced form of nicotinamide adenine dinucleotide and Fp is the oxidized flavoproteins, has been established as a sensitive indicator of mitochondrial redox state. In this paper, we report our redox imaging data on the mitochondrial redox state of mouse ESC (mESC) colonies and the implications thereof. The low-temperature NADH/Fp redox scanner was employed to image mESC colonies grown on a feeder layer of gamma-irradiated mouse embryonic fibroblasts (MEFs) on glass cover slips. The result showed significant heterogeneity in the mitochondrial redox state within individual mESC colonies (size: ~200-440 μm), exhibiting a core with a more reduced state than the periphery. This more reduced state positively correlates with the expression pattern of Oct4, a well-established marker of pluripotency. Our observation is the first to show the heterogeneity in the mitochondrial redox state within a mESC colony, suggesting that mitochondrial redox state should be further investigated as a potential new biomarker for the stemness of embryonic stem cells.
References

[1] M. J. Evans, M. H. Kaufman, "Establishment in culture of pluripotential cells from mouse embryos," Nature 292, 154-156 (1981).

[2] G. R. Martin, "Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells," Proc. Natl. Acad. Sci. USA 78, 7634-7638 (1981).

[3] J. A. Thomson, J. Itskovitz-Eldor, S. S. Shapiro, M. A. Waknitz, J. J. Swiergiel, V. S. Marshall, J. M. Jones, "Embryonic stem cell lines derived from human blastocysts," Science 282, 1145-1147 (1998).

[4] R. S. Beddington, E. J. Robertson, "An assessment of the developmental potential of embryonic stem cells in the midgestation mouse embryo," Development 105, 733-737 (1989).

[5] J. Rossant, "Stem cells and lineage development in the mammalian blastocyst," Reprod. Fertil. Dev. 19, 111-118 (2007).

[6] N. Christoforou, R. A. Miller, C. M. Hill, C. C. Jie, A. S. McCallion, J. D. Gearhart, "Mouse ES cellderived cardiac precursor cells are multipotent and facilitate identification of novel cardiac genes," J. Clin. Invest. 118, 894-903 (2008).

[7] R. C. Addis, M. K. Prasad, R. L. Yochem, X. Zhan, T. P. Sheets, J. Axelman, E. S. Patterson, M. J. Shamblott, "OCT3/4 regulates transcription of histone deacetylase 4 (Hdac4) in mouse embryonic stem cells," J. Cell. Biochem. 111, 391-401 (2010).

[8] J. Nichols, B. Zevnik, K. Anastassiadis, H. Niwa, D. Klewe-Nebenius, I. Chambers, H. Scholer, A. Smith, "Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4," Cell 95, 379-391 (1998).

[9] A. A. Avilion, S. K. Nicolis, L. H. Pevny, L. Perez, N. Vivian, R. Lovell-Badge, "Multipotent cell lineages in early mouse development depend on SOX2 function," Genes. Dev. 17, 126-140 (2003).

[10] I. Chambers, D. Colby, M. Robertson, J. Nichols, S. Lee, S. Tweedie, A. Smith, "Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells," Cell 113, 643-655 (2003).

[11] K. Mitsui, Y. Tokuzawa, H. Itoh, K. Segawa, M. Murakami, K. Takahashi, M. Maruyama, M. Maeda, S. Yamanaka, "The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells," Cell 113, 631-642 (2003).

[12] I. Chambers, S. R. Tomlinson, "The transcriptional foundation of pluripotency," Development 136, 2311-2322 (2009).

[13] B. Chance, H. Baltscheffsky, "Respiratory enzymes in oxidative phosphorylation. VII. Binding of intramitochondrial reduced pyridine nucleotide," J. Biol. Chem. 233, 736-739 (1958).

[14] B. Chance, B. Schoener, R. Oshino, F. Itshak, Y. Nakase, "Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples. NADH and flavoprotein fluorescence signals," J. Biol. Chem. 254, 4764-4771 (1979).

[15] B. Chance, G. R. Williams, "Method for the localization of sites for oxidative phosphorylation," Nature 176, 250-254 (1955).

[16] B. Chance, G. R. Williams, "Respiratory enzymes in oxidative phosphorylation. The respiratory chain," J. Biol. Chem. 217, 429-438 (1955).

[17] B. Chance, "Pyridine nucleotide as an indicator of the oxygen requirements for energy-linked functions of mitochondria," Circ. Res. 38, 131-138 (1976).

[18] B. Chance, P. Cohen, F. Jobsis, B. Schoener, "Intracellular oxidation-reduction states in vivo," Science 137, 499-508 (1962).

[19] B. Chance, P. Cohen, F. Jobsis, B. Schoener, "Localized fluorometry of oxidation-reduction states of intracellular pyridine nucleotide in brain and kidney cortex of the anesthetized rat," Science 136, 325 (1962).

[20] B. Chance, N. Oshino, T. Sugano, A. Mayevsky, "Basic principles of tissue oxygen determination from mitochondrial signals," Adv. Exp. Med. Biol. 37A, 277-292 (1973).

[21] I. Hassinen, B. Chance, "Oxidation-reduction properties of the mitochondrial flavoprotein chain," Biochem. Biophys. Res. Commun. 31, 895-900 (1968).

[22] M. Ranji, S. Nioka, N. Xu, B. Wu, L. Z. Li, D. L. Jaggard, B. Chance, "Fluorescent images of mitochondrial redox states in in situ mouse hypoxic ischemic intestines," JIOHS 2, 365-374 (2009).

[23] B. Chance, "Spectrophotometric and kinetic studies of flavoproteins in tissues, cell suspensions, mitochondria and their fragments," in Flavins and Flavoproteins E. C. Slater, ed., pp. 498-510, Elsevier, Amsterdam (1966).

[24] K. Sato, Y. Kashiwaya, C. A. Keon, N. Tsuchiya, M. T. King, G. K. Radda, B. Chance, K. Clarke, R. L. Veech, "Insulin, ketone bodies, and mitochondrial energy transduction," Faseb. J. 9, 651-658 (1995).

[25] O. Yanes, J. Clark, D. M. Wong, G. J. Patti, A. Sanchez-Ruiz, H. P. Benton, S. A. Trauger, C. Desponts, S. Ding, G. Siuzdak, "Metabolic oxidation regulates embryonic stem cell differentiation," Nat. Chem. Biol. 6, 411 (2010).

[26] J. M. Reyes, S. Fermanian, F. Yang, S. Y. Zhou, S. Herretes, D. B. Murphy, J. H. Elisseeff, R. S. Chuck, "Metabolic changes in mesenchymal stem cells in osteogenic medium measured by autofluorescence spectroscopy," Stem Cells 24, 1213-1217 (2006).

[27] Y. Gu, Z. Qian, J. Chen, D. Blessington, N. Ramanujam, B. Chance, "High-resolution threedimensional scanning optical image system for intrinsic and extrinsic contrast agents in tissue," Rev. Sci. Instrum. 73, 172-178 (2002).

[28] B. Quistorff, J. C. Haselgrove, B. Chance, "High spatial resolution readout of 3-D metabolic organ structure: An automated, low-temperature redox ratio-scanning instrument," Anal. Biochem. 148, 389-400 (1985).

[29] B. Chance, "Optical Method," Ann. Rev. Biophys. Biophys. Chem. 20, 1-28 (1991).

[30] B. Chance, C. Barlow, J. Haselgrove, Y. Nakase, B. Quistorff, F. Matschinsky, A. Mayevsky, "Microheterogeneities of redox states of perfused and intact organs," in Microenvironments and Metabolic Compartmentation, P. A. Srere, E. W. Estabrook, eds., pp. 131-148, Academic Press, New York (1978).

[31] H. N. Xu, B. Wu, S. Nioka, B. Chance, L. Z. Li, "Biomedical optics calibration of redox scanning for tissue samples." 71742F, SPIE, San Jose, CA (2009).

[32] H. N. Xu, B. Wu, S. Nioka, B. Chance, L. Z. Li, "Quantitative redox scanning of tissue samples using a calibration procedure," JIOHS 2, 375-385 (2009).

[33] L. Z. Li, R. Zhou, H. N. Xu, L. Moon, T. Zhong, E. J. Kim, H. Qiao, R. Reddy, D. Leeper, B. Chance, J. D. Glickson, "Quantitative magnetic resonance and optical imaging biomarkers of melanoma metastatic potential," Proc. Natl. Acad. Sci. USA 106, 6608-6613 (2009).

[34] H. N. Xu, S. Nioka, J. D. Glickson, B. Chance, L. Z. Li, "Quantitative mitochondrial redox imaging of breast cancer metastatic potential," J. Biomed. Optics 15, 036010 (2010).

[35] H. N. Xu, S. Nioka, B. Chance, L. Z. Li, "Heterogeneity of mitochondrial redox state in premalignant pancreas in a PTEN null transgenic mouse model," Adv. Exp. Med. Biol. (2011) [in press].

[36] L. Z. Li, H. N. Xu, M. Ranji, S. Nioka, B. Chance, "Mitochondrial redox imaging for cancer diagnostic and therapeutic studies," J. Innov. Opt. Health Sci. 2, 325-341 (2009).

[37] Z. Zhang, D. Blessington, H. Li, T. M. Busch, J. Glickson, Q. Luo, B. Chance, G. Zheng, "Redox ratio of mitochondria as an indicator for the response of photodynamic therapy," J. Biomed. Opt. 9, 772-778 (2004).

[38] N. C. Shaner, R. E. Campbell, P. A. Steinbach, B. N. Giepmans, A. E. Palmer, R. Y. Tsien, "Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein," Nat. Biotechnol. 22, 1567-1572 (2004).

[39] D. J. Rodda, J. L. Chew, L. H. Lim, Y. H. Loh, B. Wang, H. H. Ng, P. Robson, "Transcriptional regulation of nanog by OCT4 and SOX2," J. Biol. Chem. 280, 24731-24737 (2005).

[40] R. E. Davey, P. W. Zandstra, "Spatial organization of embryonic stem cell responsiveness to autocrine gp130 ligands reveals an autoregulatory stem cell niche," Stem Cells 24, 2538-2548 (2006).

[41] W. L. Rice, D. L. Kaplan, I. Georgakoudi, "Twophoton microscopy for non-invasive, quantitative monitoring of stem cell differentiation," PLoS One 5(4), C10075 (2010).

[42] R. Peerani, K. Onishi, A. Mahdavi, E. Kumacheva, P. W. Zandstra, "Manipulation of signaling thresholds in "engineered stem cell niches" identifies design criteria for pluripotent stem cell screens," PLoS One 4, e6438 (2009).

[43] K. Ozawa, B. Chance, A. Tanaka, S. Iwata, T. Kitai, I. Ikai, "Linear correlation between acetoacetate β-hydroxybutyrate in arterial blood and oxidized flavoprotein reduced pyridine-nucleotide in freeze-trapped human liver-tissue," Biochimica Et Biophysica Acta 1138, 350-352 (1992).

[44] L. Z. Li, R. Zhou, T. Zhong, L. Moon, E. J. Kim, H. Qiao, S. Pickup, M. J. Hendrix, D. Leeper, B. Chance, J. D. Glickson, "Predicting melanoma metastatic potential by optical and magnetic resonance imaging," Adv. Exp. Med. Biol. 599, 67-78 (2007).

HE N. XU, RUSSELL C. ADDIS, DAVIDA F. GOINGS, SHOKO NIOKA, BRITTON CHANCE, JOHN D. GEARHART, LIN Z. LI. IMAGING REDOX STATE HETEROGENEITY WITHIN INDIVIDUAL EMBRYONIC STEM CELL COLONIES[J]. Journal of Innovative Optical Health Sciences, 2011, 4(3): 279.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!