中国激光, 2020, 47 (11): 1102002, 网络出版: 2020-11-11   

30CrMnSiA和30CrMnSiNi2A高强钢激光熔覆修复后的组织特征与力学性能 下载: 1028次

Microstructures and Mechanical Properties of 30CrMnSiA and 30CrMnSiNi2A High-Strength Steels After Laser-Cladding Repair
作者单位
1 上海交通大学材料科学与工程学院, 上海市激光制造与材料改性重点实验室, 上海 200240
2 中国人民解放军第四七二四工厂, 上海 200436
引用该论文

庞小通, 龚群甫, 王志杰, 李铸国, 姚成武. 30CrMnSiA和30CrMnSiNi2A高强钢激光熔覆修复后的组织特征与力学性能[J]. 中国激光, 2020, 47(11): 1102002.

Pang Xiaotong, Gong Qunfu, Wang Zhijie, Li Zhuguo, Yao Chengwu. Microstructures and Mechanical Properties of 30CrMnSiA and 30CrMnSiNi2A High-Strength Steels After Laser-Cladding Repair[J]. Chinese Journal of Lasers, 2020, 47(11): 1102002.

参考文献

[1] 杨斯达. 30CrMnSiA钢激光-MAG复合焊接裂纹形成原因与抑制措施[D]. 哈尔滨: 哈尔滨工业大学, 2012: 1- 9.

    Yang SD. Formation causes and suppression of cracking in laser-MAG hybrid welding of 30CrMnSiA steel[D]. Harbin: Harbin Institute of Technology, 2012: 1- 9.

[2] 庄明祥, 李小曼, 徐梅, 等. 30CrMnSiNi2A超高强度钢真空电子束焊接工艺应用研究[J]. 航空制造技术, 2017, 60(6): 100-104.

    Zhuang M X, Li X M, Xu M, et al. Vacuum electron beam welding technology research on 30CrMnSiNi2A ultra-high strength steel[J]. Aeronautical Manufacturing Technology, 2017, 60(6): 100-104.

[3] 王华明. 金属材料激光表面改性与高性能金属零件激光快速成形技术研究进展[J]. 航空学报, 2002, 23(5): 473-478.

    Wang H M. Research progress on laser surface modifications of metallic materials and laser rapid forming of high performance metallic components[J]. Acta Aeronautica et Astronautica Sinica, 2002, 23(5): 473-478.

[4] Da Sun S, Fabijanic D, Barr C, et al. In-situ quench and tempering for microstructure control and enhanced mechanical properties of laser cladded AISI 420 stainless steel powder on 300M steel substrates[J]. Surface and Coatings Technology, 2018, 333: 210-219.

[5] Liu J, Li J, Cheng X, et al. Effect of dilution and macrosegregation on corrosion resistance of laser clad AerMet100 steel coating on 300M steel substrate[J]. Surface and Coatings Technology, 2017, 325: 352-359.

[6] Liu J, Li J, Cheng X, et al. Microstructures and tensile properties of laser cladded AerMet100 steel coating on 300M steel[J]. Journal of Materials Science & Technology, 2018, 34(4): 643-652.

[7] Rahman Rashid R A, Nazari K A, Barr C, et al. Effect of laser reheat post-treatment on the microstructural characteristics of laser-cladded ultra-high strength steel[J]. Surface and Coatings Technology, 2019, 372: 93-102.

[8] Rahman Rashid R A, Barr C J, Palanisamy S, et al. Effect of clad orientation on the mechanical properties of laser-clad repaired ultra-high strength 300M steel[J]. Surface and Coatings Technology, 2019, 380: 125090.

[9] Barr C, Da Sun S, Easton M, et al. Influence of delay strategies and residual heat on in situ tempering in the laser metal deposition of 300M high strength steel[J]. Surface and Coatings Technology, 2020, 383: 125279.

[10] Liu F G, Lin X, Song M H, et al. Microstructure and mechanical properties of laser solid formed 300M steel[J]. Journal of Alloys and Compounds, 2015, 621: 35-41.

[11] Lourenço J M, Sun S D, Sharp K, et al. Fatigue and fracture behavior of laser clad repair of AerMet ® 100 ultra-high strength steel[J]. International Journal of Fatigue, 2016, 85: 18-30.

[12] Walker K F, Lourenço J M, Sun S, et al. Quantitative fractography and modelling of fatigue crack propagation in high strength AerMet® 100 steel repaired with a laser cladding process[J]. International Journal of Fatigue, 2017, 94: 288-301.

[13] Barr C, Da Sun S, Easton M, et al. Influence of macrosegregation on solidification cracking in laser clad ultra-high strength steels[J]. Surface and Coatings Technology, 2018, 340: 126-136.

[14] Sun S D, Liu Q C, Brandt M, et al. Effect of laser clad repair on the fatigue behaviour of ultra-high strength AISI 4340 steel[J]. Materials Science and Engineering A, 2014, 606: 46-57.

[15] Chew Y. Pang J H L, Bi G J, et al. Effects of laser cladding on fatigue performance of AISI 4340 steel in the as-clad and machine treated conditions[J]. Journal of Materials Processing Technology, 2017, 243: 246-257.

[16] Sun G F, Yao S, Wang Z D, et al. Microstructure and mechanical properties of HSLA-100 steel repaired by laser metal deposition[J]. Surface and Coatings Technology, 2018, 351: 198-211.

[17] 黎文强. 30CrMnSi钢表面激光熔覆强化技术研究[J]. 特种铸造及有色合金, 2019, 39(10): 1058-1061.

    Li W Q. Laser cladding intensification on 30CrMnSi surface[J]. Special Casting & Nonferrous Alloys, 2019, 39(10): 1058-1061.

[18] 张志强, 秦仁耀, 孙涛, 等. 30CrMnSiA钢激光熔覆接头的微观组织和性能[J]. 焊接技术, 2018, 47(12): 9-14.

    Zhang Z Q, Qin R Y, Sun T, et al. Microstructure and properties of laser cladding joints of 30CrMnSiA steel[J]. Welding Technology, 2018, 47(12): 9-14.

[19] 周可欣, 秦仁耀, 曹强, 等. 30CrMnSiNi2A钢激光熔覆1Cr15Ni4Mo3粉末工艺[J]. 激光与光电子学进展, 2018, 55(7): 071404.

    Zhou K X, Qing R Y, Cao Q, et al. Process of laser cladding of 1Cr15Ni4Mo3 powder on 30CrMnSiNi2A steels[J]. Laser & Optoelectronics Progress, 2018, 55(7): 071404.

[20] 张志强, 程宗辉, 曹强, 等. 30CrMnSiNi2A超强钢激光熔覆修复试验研究[J]. 装备环境工程, 2016, 13(1): 62-67.

    Zhang Z Q, Cheng Z H, Cao Q, et al. Repairing of 30CrMnSiNi2A high strength steel by laser cladding[J]. Equipment Environmental Engineering, 2016, 13(1): 62-67.

[21] 朱红梅, 胡际鹏, 李柏春, 等. 铁基材料表面激光熔覆不锈钢涂层的研究进展[J]. 表面技术, 2020, 49(3): 74-84.

    Zhu H M, Hu J P, Li B C, et al. Research progress of laser cladding stainless steel coating on Fe-based substrate[J]. Surface Technology, 2020, 49(3): 74-84.

[22] Lei Z L, Li B W, Ni L C, et al. Mechanism of the crack formation and suppression in laser-MAG hybrid welded 30CrMnSiA joints[J]. Journal of Materials Processing Technology, 2017, 239: 187-194.

[23] 李学军, 黄坚, 潘华, 等. QP1180高强钢薄板激光焊接接头的组织与成形性能[J]. 中国激光, 2019, 46(3): 0302006.

    Li X J, Huang J, Pan H, et al. Microstructure and formability of laser welding joint of QP1180 high-strength steel sheet[J]. Chinese Journal of Lasers, 2019, 46(3): 0302006.

[24] Chipman J. Thermodynamics and phase diagram of the Fe-C system[J]. Metallurgical and Materials Transactions B, 1972, 3(1): 55-64.

[25] 苏铁健, 王富耻, 李树奎, 等. 合金钢的热导率计算[J]. 北京理工大学学报, 2005, 25(1): 91-94.

    Su T J, Wang F C, Li S K, et al. Calculation of thermal conductivity for alloy steels[J]. Transactions of Beijing Institute of Technology, 2005, 25(1): 91-94.

[26] Burtsev S A. Exploring ways to improve efficiency of gasdynamic energy separation[J]. High Temperature, 2014, 52(1): 12-18.

[27] Sattar A, Abbas M, Hasham H J, et al. Experimental and analytical investigation of steel bolts failed after isothermal heat treatment[J]. Journal of Failure Analysis and Prevention, 2015, 15(2): 327-333.

[28] Liu BX, Chen CX, Yin FX, et al.Microstructure analysis and weldability investigation of stainless steel clad plate[M] ∥The Minerals, Metals & Materials Series. Cham: Springer International Publishing, 2017: 425- 433.

[29] 朱红梅, 胡文锋, 李勇作, 等. 回火温度对马氏体不锈钢激光熔覆层组织和性能的影响[J]. 中国激光, 2019, 46(12): 1202001.

    Zhu H M, Hu W F, Li Y Z, et al. Effect of tempering temperature on microstructure and properties of laser-cladded martensitic stainless steel layer[J]. Chinese Journal of Lasers, 2019, 46(12): 1202001.

庞小通, 龚群甫, 王志杰, 李铸国, 姚成武. 30CrMnSiA和30CrMnSiNi2A高强钢激光熔覆修复后的组织特征与力学性能[J]. 中国激光, 2020, 47(11): 1102002. Pang Xiaotong, Gong Qunfu, Wang Zhijie, Li Zhuguo, Yao Chengwu. Microstructures and Mechanical Properties of 30CrMnSiA and 30CrMnSiNi2A High-Strength Steels After Laser-Cladding Repair[J]. Chinese Journal of Lasers, 2020, 47(11): 1102002.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!