中国激光, 2020, 47 (8): 0802011, 网络出版: 2020-08-17   

激光增减材交互中基体温度状态对表面质量影响研究 下载: 812次

Influence of Matrix Temperature State on Surface Quality During Interactive Additive and Subtractive Manufacturing
高孟秋 1,2,3,4赵宇辉 1,2,3赵吉宾 1,2,3,*王志国 1,2,3王志永 1,2,3,5孙力博 1,2,3,6
作者单位
1 中国科学院网络化控制系统重点实验室, 辽宁 沈阳 110016
2 中国科学院沈阳自动化研究所, 辽宁 沈阳 110016
3 中国科学院机器人与智能制造创新研究院, 辽宁 沈阳 110169
4 中国科学院大学, 北京 100049
5 东北大学机械工程与自动化学院, 辽宁 沈阳 110819
6 沈阳工业大学材料科学与工程学院, 辽宁 沈阳 110870
引用该论文

高孟秋, 赵宇辉, 赵吉宾, 王志国, 王志永, 孙力博. 激光增减材交互中基体温度状态对表面质量影响研究[J]. 中国激光, 2020, 47(8): 0802011.

Gao Mengqiu, Zhao Yuhui, Zhao Jibin, Wang Zhiguo, Wang Zhiyong, Sun Libo. Influence of Matrix Temperature State on Surface Quality During Interactive Additive and Subtractive Manufacturing[J]. Chinese Journal of Lasers, 2020, 47(8): 0802011.

参考文献

[1] 明宪良, 唐晔, 汪小明, 等. 多尺度构型-多材料融合的功能结构增材制造技术[J]. 工业技术创新, 2018, 5(4): 34-40.

    Ming X L, Tang Y, Wang X M, et al. Additive manufacturing technology of functional structure based on multi-size configuration and multiple materials integration[J]. Industrial Technology Innovation, 2018, 5(4): 34-40.

[2] 安国进. 金属增材制造技术在航空航天领域的应用与展望[J]. 现代机械, 2019( 3): 39- 43.

    An GJ. Application and prospect of metal additive manufacturing technology in aerospace[J]. Modern Machinery, 2019( 3): 39- 43.

[3] 王德花, 马筱舒. 需求引领创新驱动: 3D打印发展现状及政策建议[J]. 中国科技产业, 2014( 8): 46- 53.

    Wang DH, Ma XS. Demand leading innovation-driven——development status and policy suggestions of 3D printing[J]. Science & Technology Industry of China, 2014( 8): 46- 53.

[4] 张安峰, 李涤尘, 梁少端, 等. 高性能金属零件激光增材制造技术研究进展[J]. 航空制造技术, 2016( 22): 16- 22.

    Zhang AF, Li DC, Liang SD, et al. Development of laser additive manufacturing of high-performance metal parts[J]. Aeronautical Manufacturing Technology, 2016( 22): 16- 22.

[5] 何波, 王晨, 孙长青, 等. 基材预热对激光沉积TA15/GH4169复合结构组织与性能的影响[J]. 中国激光, 2020, 47(1): 0102002.

    He B, Wang C, Sun C Q, et al. Effect of substrate preheating on microstructure and properties of laser-deposited TA15/GH4169 composite structure[J]. Chinese Journal of Lasers, 2020, 47(1): 0102002.

[6] 廖聪豪, 周静沈洪. 增材制造TC4钛合金在激光抛光前后的电化学腐蚀性能[J]. 中国激光, 2020, 47(1): 0102003.

    Liao C H, Zhou J, Shen H. Electrochemical corrosion behaviors before and after laser polishing of additive manufactured TC4 titanium alloy[J]. Chinese Journal of Lasers, 2020, 47(1): 0102003.

[7] 招润焯, 丁东红, 王凯, 等. 金属增减材混合制造研究进展[J]. 电焊机, 2019, 49(7): 66-77.

    Zhao R Z, Ding D H, Wang K, et al. Research progress of metal additive and subtractive hybrid manufacturing technology[J]. Electric Welding Machine, 2019, 49(7): 66-77.

[8] Mazumder J, Dutta D, Kikuchi N, et al. Closed loop direct metal deposition: art to part[J]. Optics and Lasers in Engineering, 2000, 34(4/5/6): 397-414.

[9] Sames W J, List F A, Pannala S, et al. The metallurgy and processing science of metal additive manufacturing[J]. International Materials Reviews, 2016, 61(5): 315-360.

[10] 郭鹏. 激光增材制造不锈钢的力学性能和铣削性能研究[D]. 济南: 山东大学, 2017.

    GuoP. Study on mechanical properties and milling performance of stainless steel manufactured by laser additive manufacturing[D]. Jinan: Shandong University, 2017.

[11] Du W, Bai Q, Zhang B. A novel method for additive/subtractive hybrid manufacturing of metallic parts[J]. Procedia Manufacturing, 2016, 5: 1018-1030.

[12] Mughal M P, Mufti R A, Fawad H. The effects of machining on material properties in hybrid welding/milling based rapid prototyping[J]. International Journal of Computational Materials Science and Surface Engineering, 2009, 2: 3.

[13] Yang Y Y, Gong Y D, Qu S S, et al. Densification, surface morphology, microstructure and mechanical properties of 316L fabricated by hybrid manufacturing[J]. The International Journal of Advanced Manufacturing Technology, 2018, 97(5): 2687-2696.

[14] Li P F, Gong Y D, Wen X L, et al. Surface residual stresses in additive/subtractive manufacturing and electrochemical corrosion[J]. The International Journal of Advanced Manufacturing Technology, 2018, 98(1): 687-697.

[15] 王慧艺, 林建平, 阮雪榆. 加热辅助切削研究[J]. 机械设计与制造, 2002( 1): 75- 77.

    Wang HY, Lin JP, Ruan XY. Researching on heating-assisted cutting[J]. Machinery Design & Manufacture, 2002( 1): 75- 77.

[16] 田荣鑫, 姚倡锋, 武导侠. 高速铣削铝合金7055铣削力和铣削温度的仿真研究[J]. 航空制造技术, 2016( 6): 67- 71.

    Tian R X, Yao C F, temperature of aluminum alloy. under high-speed milling[J]. Aeronautical Manufacturing Technology, 7055, 2016(6): 67-71.

[17] An H P, Rui Z Y, Wang R F, et al. Research on cutting-temperature field and distribution of heat rates among a workpiece, cutter, and chip for high-speed cutting based on analytical and numerical methods[J]. Strength of Materials, 2014, 46(2): 289-295.

[18] 吴林涛, 王希, 周竞, 等. 通电加热铣削原理及试验验证[J]. 机械科学与技术, 2015, 34(4): 560-564.

    Wu L T, Wang X, Zhou J, et al. The principle of electric hot milling and its experimental verification[J]. Mechanical Science and Technology for Aerospace Engineering, 2015, 34(4): 560-564.

[19] 李连清. 高温合金超塑切削[J]. 宇航材料工艺, 2005, 35(3): 42.

    Li L Q. Superplastic cutting of superalloys[J]. Aerospace Materials & Technology, 2005, 35(3): 42.

[20] 吴雪峰, 赵博文, 冯高诚. 激光加热辅助铣削高温合金GH4698试验研究[J]. 工具技术, 2016, 50(4): 12-16.

    Wu X F, Zhao B W, Feng G C. Experimental study on laser-assisted milling of super-alloy GH4698[J]. Tool Engineering, 2016, 50(4): 12-16.

[21] 朱红梅, 胡文锋, 李勇作, 等. 回火温度对马氏体不锈钢激光熔覆层组织和性能的影响[J]. 中国激光, 2019, 46(12): 1202001.

    Zhu H M, Hu W F, Li Y Z, et al. Effect of tempering temperature on microstructure and properties of laser-cladded martensitic stainless steel layer[J]. Chinese Journal of Lasers, 2019, 46(12): 1202001.

[22] 陈帅, 陶凤和, 贾长治. 选区激光熔化成形4Cr5MoSiV1钢回火处理后显微组织和力学性能[J]. 中国激光, 2019, 46(10): 1002005.

    Chen S, Tao F H, Jia C Z. Microstructure and mechanical properties of 4Cr5MoSiV1 steel fabricated via selective laser melting post tempering[J]. Chinese Journal of Lasers, 2019, 46(10): 1002005.

[23] Li L, Haghighi A, Yang Y R. Theoretical modelling and prediction of surface roughness for hybrid additive-subtractive manufacturing processes[J]. IISE Transactions, 2019, 51(2): 124-135.

[24] 胡瑞泽, 张松. H13钢硬态铣削表面变质层研究[J]. 工具技术, 2019, 53(6): 14-18.

    Hu R Z, Zhang S. Investigation of surface deformation layer in hard milling H13 steel[J]. Tool Engineering, 2019, 53(6): 14-18.

[25] 黄向明, 周志雄, 杨军, 等. 塑性变形在淬硬钢磨削白层形成中的作用机理[J]. 湖南大学学报(自然科学版), 2010, 37(1): 35-40.

    Huang X M, Zhou Z X, Yang J, et al. Action mechanism of plastic deformation on the grinding white layer of harden bearing steel[J]. Journal of Hunan University (Natural Sciences), 2010, 37(1): 35-40.

[26] 林鑫, 杨海欧, 陈静, 等. 激光快速成形过程中316L不锈钢显微组织的演变[J]. 金属学报, 2006, 42(4): 361-368.

    Lin X, Yang H O, Chen J, et al. Microstructure evolution of 316L stainless steel during laser rapid forming[J]. Acta Metallurgica Sinica, 2006, 42(4): 361-368.

[27] Li J G, Wang S Q. Distortion caused by residual stresses in machining aeronautical aluminum alloy parts: recent advances[J]. The International Journal of Advanced Manufacturing Technology, 2017, 89(1): 997-1012.

[28] 周显新, 辛博, 巩亚东, 等. 扫描方向对变厚度熔覆成形件组织与力学性能的影响[J]. 中国激光, 2019, 46(8): 0802003.

    Zhou X X, Xin B, Gong Y D, et al. Effect of scanning direction on microstructure and mechanical properties of part formed via variable thickness layer cladding deposition[J]. Chinese Journal of Lasers, 2019, 46(8): 0802003.

高孟秋, 赵宇辉, 赵吉宾, 王志国, 王志永, 孙力博. 激光增减材交互中基体温度状态对表面质量影响研究[J]. 中国激光, 2020, 47(8): 0802011. Gao Mengqiu, Zhao Yuhui, Zhao Jibin, Wang Zhiguo, Wang Zhiyong, Sun Libo. Influence of Matrix Temperature State on Surface Quality During Interactive Additive and Subtractive Manufacturing[J]. Chinese Journal of Lasers, 2020, 47(8): 0802011.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!