Photonics Research, 2021, 9 (2): 02000243, Published Online: Feb. 2, 2021   

Dual-comb spectroscopy resolved three-degree-of-freedom sensing Download: 610次

Author Affiliations
1 State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
2 Division of Advanced Manufacturing, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
Copy Citation Text

Siyu Zhou, Vunam Le, Shilin Xiong, Yuetang Yang, Kai Ni, Qian Zhou, Guanhao Wu. Dual-comb spectroscopy resolved three-degree-of-freedom sensing[J]. Photonics Research, 2021, 9(2): 02000243.

References

[1] R. H. Vassar, R. B. Sherwood. Formation keeping for a pair of satellites in a circular orbit. J. Guid. Control Dyn., 1985, 8: 235-242.

[2] A. B. Decou. Orbital station-keeping for multiple spacecraft interferometry. J. Astronaut. Sci., 1991, 39: 283-297.

[3] P. Singla, K. Subbarao, J. Junkins. Adaptive output feedback control for spacecraft rendezvous and docking under measurement uncertainty. J. Guid. Control Dyn., 2006, 29: 892-902.

[4] R. Duren, E. Wong, B. Breckenridge, S. Shaffer, C. Duncan, E. Tubbs, P. Salomon. Metrology, attitude, and orbit determination for spaceborne interferometric synthetic aperture radar. Proc. SPIE, 1998, 3365: 51-60.

[5] H. Bosse, G. Wilkening. Developments at PTB in nanometrology for support of the semiconductor industry. Meas. Sci. Technol., 2005, 16: 2155-2166.

[6] W. Gao, S. W. Kim, H. Bosse, H. Haitjema, Y. Chen, X. Lu, W. Knapp, A. Weckenmann, W. T. Estler, H. Kunzmann. Measurement technologies for precision positioning. CIRP Ann., 2015, 64: 773-796.

[7] W. T. Estler, K. L. Edmundson, G. N. Peggs, D. H. Parker. Large-scale metrology–an update. CIRP Ann., 2002, 51: 587-609.

[8] S.-W. Kim. Combs rule. Nat. Photonics, 2009, 3: 313-314.

[9] T. Udem, R. Holzwarth, T. W. Hänsch. Optical frequency metrology. Nature, 2002, 416: 233-237.

[10] S. A. van den Berg, S. T. Persijn, G. J. P. Kok, M. G. Zeitouny, N. Bhattacharya. Many-wavelength interferometry with thousands of lasers for absolute distance measurement. Phys. Rev. Lett., 2012, 108: 183901.

[11] K.-N. Joo, S.-W. Kim. Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser. Opt. Express, 2006, 14: 5954-5960.

[12] K. Minoshima, H. Matsumoto. High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser. Appl. Opt., 2000, 39: 5512-5517.

[13] J. Ye. Absolute measurement of a long, arbitrary distance to less than an optical fringe. Opt. Lett., 2004, 29: 1153-1155.

[14] P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, C. Koos. Ultrafast optical ranging using microresonator soliton frequency combs. Science, 2018, 359: 887-891.

[15] M. G. Suh, K. J. Vahala. Soliton microcomb range measurement. Science, 2018, 359: 884-887.

[16] T. Minamikawa, Y.-D. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, T. Yasui. Dual-comb spectroscopic ellipsometry. Nat. Commun., 2017, 8: 610-617.

[17] I. Coddington, W. C. Swann, L. Nenadovic, N. R. Newbury. Rapid and precise absolute distance measurements at long range. Nat. Photonics, 2009, 3: 351-356.

[18] I. Coddington, N. Newbury, W. Swann. Dual-comb spectroscopy. Optica, 2016, 3: 414-426.

[19] P. K. C. Wang, F. Y. Hadaegh, K. Lau. Synchronized formation rotation and attitude control of multiple free-flying spacecraft. J. Guid. Control Dyn., 1999, 22: 28-35.

[20] L. Uriarte, M. Zatarain, D. Axinte, J. Yagüe-Fabra, S. Ihlenfeldt, J. Eguia, A. Olarra. Machine tools for large parts. CIRP Ann., 2013, 62: 731-750.

[21] M. Ikram, G. Hussain. Michelson interferometer for precision angle measurement. Appl. Opt., 1999, 38: 113-120.

[22] J. W. Kim, C. S. Kang, J. A. Kim, T. Eom, M. Cho, H. J. Kong. A compact system for simultaneous measurement of linear and angular displacements of nano-stages. Opt. Express, 2007, 15: 15759-15766.

[23] K.-C. Fan, R.-J. Li, P. Xu. Design and verification of micro/nano-probes for coordinate measuring machines. Nanomanuf. Metrol., 2019, 2: 1-15.

[24] W. Gao, Y. Saito, H. Muto, Y. Arai, Y. Shimizu. A three-axis autocollimator for detection of angular error motions of a precision stage. CIRP Ann., 2011, 60: 515-518.

[25] Y. Zhao, B. Zhang, Q. Feng. Measurement system and model for simultaneously measuring 6DOF geometric errors. Opt. Express, 2017, 25: 20993-21007.

[26] T. Schuldt, M. Gohlke, D. Weise, U. Johann, A. Peters, C. Braxmaier. Picometer and nanoradian optical heterodyne interferometry for translation and tilt metrology of the LISA gravitational reference sensor. Classical Quantum Gravity, 2009, 26: 085008.

[27] H. Yan, H.-Z. Duan, L.-T. Li, Y.-R. Liang, J. Luo, H.-C. Yeh. A dual-heterodyne laser interferometer for simultaneous measurement of linear and angular displacements. Rev. Sci. Instrum., 2015, 86: 123102.

[28] S. R. Gillmer, R. C. G. Smith, S. C. Woody, J. D. Ellis. Compact fiber-coupled three degree-of-freedom displacement interferometry for nanopositioning stage calibration. Meas. Sci. Technol., 2014, 25: 075205.

[29] F. Yang, M. Zhang, W. Ye, L. Wang. Three-degrees-of-freedom laser interferometer based on differential wavefront sensing with wide angular measurement range. Appl. Opt., 2019, 58: 723-728.

[30] S. Strube, G. Molnar, H.-U. Danzebrink. Compact field programmable gate array (FPGA)-based multi-axial interferometer for simultaneous tilt and distance measurement in the sub-nanometre range. Meas. Sci. Technol., 2011, 22: 094026.

[31] Y.-S. Jang, S.-W. Kim. Distance measurements using mode-locked lasers: a review. Nanomanuf. Metrol., 2018, 1: 131-147.

[32] S. Han, Y.-J. Kim, S.-W. Kim. Parallel determination of absolute distances to multiple targets by time-of-flight measurement using femtosecond light pulses. Opt. Express, 2015, 23: 25874-25882.

[33] X. Liang, J. Lin, L. Yang, T. Wu, Y. Liu, J. Zhu. Simultaneous measurement of absolute distance and angle based on dispersive interferometry. IEEE Photon. Technol. Lett., 2020, 32: 449-452.

[34] Y. Chen, Y. Shimizu, J. Tamada, Y. Kudo, S. Madokoro, K. Nakamura, W. Gao. Optical frequency domain angle measurement in a femtosecond laser autocollimator. Opt. Express, 2017, 25: 16725-16738.

[35] Y. Chen, Y. Shimizu, J. Tamada, K. Nakamura, H. Matsukuma, X. Chen, W. Gao. Laser autocollimation based on an optical frequency comb for absolute angular position measurement. Precis. Eng., 2018, 54: 284-293.

[36] ZhouS.ZhuZ.XiongS.NiK.ZhouQ.WuG., “Dual-comb based angle measurement method using a grating and a corner cube combined sensor,” in Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR) (2018), paper W4F.5.

[37] Z. Zhu, K. Ni, Q. Zhou, G. Wu. Digital correction method for realizing a phase-stable dual-comb interferometer. Opt. Express, 2018, 26: 16813-16823.

[38] S. Zhou, S. Xiong, Z. Zhu, G. Wu. Simplified phase-stable dual-comb interferometer for short dynamic range distance measurement. Opt. Express, 2019, 27: 22868-22876.

[39] S. Zhou, C. Lin, Y. Yang, G. Wu. Multi-pulse sampling dual-comb ranging method. Opt. Express, 2020, 28: 4058-4066.

[40] V. Le, G. Wu, L. Zeng. A single collimating lens based dual-beam exposure system for fabricating long-period grating. Opt. Commun., 2020, 460: 125139.

Siyu Zhou, Vunam Le, Shilin Xiong, Yuetang Yang, Kai Ni, Qian Zhou, Guanhao Wu. Dual-comb spectroscopy resolved three-degree-of-freedom sensing[J]. Photonics Research, 2021, 9(2): 02000243.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!