Frontiers of Optoelectronics, 2015, 8 (4): 351, 网络出版: 2016-01-06   

Laser-based micro/nanofabrication in one, two and three dimension

Laser-based micro/nanofabrication in one, two and three dimension
作者单位
1 Department of Electrical Engineering, University of Nebraska-Lincoln, Lincoln NE 68588, USA
2 Technology and Applications Center, Newport Corporation, Irvine, CA 92606, USA
3 Institute of Chemistry of Condensed Matter of Bordeaux, ICMCB-CNRS 87, Avenue du Docteur Albert Schweitzer F-33608 Pessac Cedex, France
摘要
Advanced micro/nanofabrication of functional materials and structures with various dimensions represents a key research topic in modern nanoscience and technology and becomes critically important for numerous emerging technologies such as nanoelectronics, nanophotonics and micro/nanoelectromechanical systems. This review systematically explores the non-conventional material processing approaches in fabricating nanomaterials and micro/nanostructures of various dimensions which are challenging to be fabricated via conventional approaches. Research efforts are focused on laser-based techniques for the growth and fabrication of one-dimensional (1D), two-dimensional (2D) and three-dimensional (3D) nanomaterials and micro/nanostructures. The following research topics are covered, including: 1) laser-assisted chemical vapor deposition (CVD) for highly efficient growth and integration of 1D nanomaterial of carbon nanotubes (CNTs), 2) laser direct writing (LDW) of graphene ribbons under ambient conditions, and 3) LDW of 3D micro/nanostructures via additive and subtractive processes. Comparing with the conventional fabrication methods, the laser-based methods exhibit several unique advantages in the micro/nanofabrication of advanced functional materials and structures. For the 1D CNT growth, the laser-assisted CVD process can realize both rapid material synthesis and tight control of growth location and orientation of CNTs due to the highly intense energy delivery and laser-induced optical near-field effects. For the 2D graphene synthesis and patterning, roomtemperature and open-air fabrication of large-scale graphene patterns on dielectric surface has been successfully realized by a LDW process. For the 3D micro/nanofabrication, the combination of additive two-photon polymerization (TPP) and subtractive multi-photon ablation (MPA) processes enables the fabrication of arbitrary complex 3D micro/nanostructures which are challenging for conventional fabrication methods. Considering the numerous unique advantages of laser-based techniques, the laserbased micro/nanofabrication is expected to play a more and more important role in the fabrication of advanced functional micro/nano-devices.
Abstract
Advanced micro/nanofabrication of functional materials and structures with various dimensions represents a key research topic in modern nanoscience and technology and becomes critically important for numerous emerging technologies such as nanoelectronics, nanophotonics and micro/nanoelectromechanical systems. This review systematically explores the non-conventional material processing approaches in fabricating nanomaterials and micro/nanostructures of various dimensions which are challenging to be fabricated via conventional approaches. Research efforts are focused on laser-based techniques for the growth and fabrication of one-dimensional (1D), two-dimensional (2D) and three-dimensional (3D) nanomaterials and micro/nanostructures. The following research topics are covered, including: 1) laser-assisted chemical vapor deposition (CVD) for highly efficient growth and integration of 1D nanomaterial of carbon nanotubes (CNTs), 2) laser direct writing (LDW) of graphene ribbons under ambient conditions, and 3) LDW of 3D micro/nanostructures via additive and subtractive processes. Comparing with the conventional fabrication methods, the laser-based methods exhibit several unique advantages in the micro/nanofabrication of advanced functional materials and structures. For the 1D CNT growth, the laser-assisted CVD process can realize both rapid material synthesis and tight control of growth location and orientation of CNTs due to the highly intense energy delivery and laser-induced optical near-field effects. For the 2D graphene synthesis and patterning, roomtemperature and open-air fabrication of large-scale graphene patterns on dielectric surface has been successfully realized by a LDW process. For the 3D micro/nanofabrication, the combination of additive two-photon polymerization (TPP) and subtractive multi-photon ablation (MPA) processes enables the fabrication of arbitrary complex 3D micro/nanostructures which are challenging for conventional fabrication methods. Considering the numerous unique advantages of laser-based techniques, the laserbased micro/nanofabrication is expected to play a more and more important role in the fabrication of advanced functional micro/nano-devices.
参考文献

[1] Wiederrecht G. Handbook of Nanofabrication. Boston, MA: Elsevier, 2009

[2] Quake S R, Scherer A. From micro- to nanofabrication with soft materials. Science, 2000, 290(5496): 1536–1540

[3] Henzie J, Lee J, Lee M H, Hasan W, Odom T W. Nanofabrication of plasmonic structures. Annual Review of Physical Chemistry, 2009, 60(1): 147–165

[4] Zhang G Q, van Roosmalen A J. The changing landscape of micro/ nanoelectronics. In: More than Moore: Creating High Value Micro/ Nanoelectronics Systems. New York: Springer US, 2009, 1–31

[5] Zhang G Q, VanRoosmalen A J. More than Moore: Creating High Value Micro/Nanoelectronics Systems. New York: Springer US, 2009

[6] Liang J, Chen Y, Xu Y, Liu Z, Zhang L, Zhao X, Zhang X, Tian J, Huang Y, Ma Y, Li F. Toward all-carbon electronics: fabrication of graphene-based flexible electronic circuits and memory cards using maskless laser direct writing. ACS Applied Materials & Interfaces, 2010, 2(11): 3310–3317

[7] Meixner A J. Nanophotonics, nano-optics and nanospectroscopy. Beilstein Journal of Nanotechnology, 2011, 2: 499–500

[8] Vasa P, Ropers C, Pomraenke R, Lienau C. Ultra-fast nano-optics. Laser & Photonics Reviews. 2009, 3(6): 483–507

[9] Stockman M. Light-emitting devices: from nano-optics to street lights. Nature Materials, 2004, 3(7): 423–424

[10] Koch S W, Knorr A. Applied physics. Optics in the nano-world. Science, 2001, 293(5538): 2217–2218

[11] Fara L, Yamaguchi M. Advanced Solar Cell Materials, Technology, Modeling and Simulation. Hershey, PA: Engineering Science Reference, 2013

[12] Rau U, Abou-Ras D, Kirchartz T. Advanced Characterization Techniques for Thin Film Solar Cells.Weinheim, Germany:Wiley- VCH, 2011

[13] Zaghloul U, Papaioannou G, Bhushan B, Coccetti F, Pons P, Plana R. On the reliability of electrostatic NEMS/MEMS devices: review of present knowledge on the dielectric charging and stiction failure mechanisms and novel characterization methodologies. Microelectronics and Reliability, 2011, 51(9–11): 1810–1818

[14] Roncaglia A, Ferri M. Thermoelectric materials in MEMS and NEMS: a review. Science of Advanced Materials, 2011, 3(3): 401– 419

[15] Kumar S, Cola B A, Jackson R, Graham S. A review of carbon nanotube ensembles as flexible electronics and advanced packaging materials. Journal of Electronic Packaging, 2011, 133(2): 020906

[16] Palacios T. Graphene electronics: thinking outside the silicon box. Nature Nanotechnology, 2011, 6(8): 464–465

[17] Sinitskii A, Tour J M. Graphene electronics, unzipped. IEEE Spectrum, 2010, 47(11): 28–33

[18] Geim A K, Novoselov K S. The rise of graphene. Nature Materials, 2007, 6(3): 183–191

[19] Danilevi ius P, Rekstyte S, Balciunas E, Kraniauskas A, irmenis R, Baltriukien D, Bukelskien V, Gadonas R, Sirvydis V, Piskarskas A, Malinauskas M. Laser 3D micro/nanofabrication of polymers for tissue engineering applications. Optics & Laser Technology, 2013, 45: 518–524

[20] Zhang Y L, Chen Q D, Xia H, Sun H B. Designable 3D nanofabrication by femtosecond laser direct writing. Nano Today, 2010, 5(5): 435–448

[21] Porro S, Musso S, Giorcelli M, Chiodoni A, Tagliaferro A. Optimization of a thermal-CVD system for carbon nanotube growth. Physica E, Low-Dimensional Systems and Nanostructures, 2007, 37(1–2): 16–20

[22] Shi F, Wang Y, Xue C. Synthesis of GaN nanowires by CVD method: effect of reaction temperature. Journal of Experimental Nanoscience, 2011, 6(3): 238–247

[23] Bae S, Kim H, Lee Y, Xu X, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y I, Kim Y J, Kim K S, zyilmaz B, Ahn J H, Hong B H, Iijima S. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnology, 2010, 5 (8): 574–578

[24] Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus M S, Kong J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Letters, 2009, 9(1): 30–35

[25] Hong J, Jang J. Micropatterning of graphene sheets: recent advances in techniques and applications. Journal of Materials Chemistry, 2012, 22(17): 8179–8191

[26] Xiong W, Zhou Y S, He X N, Gao Y, Mahjouri-Samani M, Jiang L, Baldacchini T, Lu Y F. Simultaneous additive and subtractive three-dimensional nanofabrication using integrated two-photon polymerization and multiphoton ablation. Light Science & Applications, 2012, 1(4): e6

[27] Shi J, Lu Y F, Wang H, Yi K J, Lin Y S, Zhang R, Liou S H. Synthesis of suspended carbon nanotubes on silicon inverse-opal structures by laser-assisted chemical vapour deposition. Nanotechnology, 2006, 17(15): 3822–3826

[28] Xie Z, Zhou Y, He X, Gao Y, Park J, Ling H, Jiang L, Lu Y. Fast growth of diamond crystals in open air by combustion synthesis with resonant laser energy coupling. Crystal Growth & Design, 2010, 10(4): 1762–1766

[29] Park J B, Jeong MS, Jeong S H. Direct writing of carbon nanotube patterns by laser-induced chemical vapor deposition on a transparent substrate. Applied Surface Science, 2009, 255(8): 4526–4530

[30] Xiong W, Zhou Y S, Mahjouri-Samani M, YangWQ, Yi K J, He X N, Liou S H, Lu Y F. Self-aligned growth of single-walled carbon 374 Front. Optoelectron. 2015, 8(4): 351–378 nanotubes using optical near-field effects. Nanotechnology, 2009, 20(2): 025601

[31] Odom T W, Huang J, Kim P, Lieber C M. Atomic structure and electronic properties of single-walled carbon nanotubes. Nature, 1998, 391(6662): 62–64

[32] Burghard M, Klauk H, Kern K. Carbon-based field-effect transistors for nanoelectronics. Advanced Materials, 2009, 21 (25–26): 2586–2600

[33] Bachtold A, Hadley P, Nakanishi T, Dekker C. Logic circuits with carbon nanotube transistors. Science, 2001, 294(5545): 1317–1320

[34] Dai H. Carbon nanotubes: opportunities and challenges. Surface Science, 2002, 500(1–3): 218–241

[35] Avouris P, Chen J. Nanotube electronics and optoelectronics. Materials Today, 2006, 9(10): 46–54

[36] Kong J, Soh H T, Cassell A M, Quate C F, Dai H. Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature, 1998, 395(6705): 878–881

[37] Li Y, Mann D, Rolandi M, Kim W, Ural A, Hung S, Javey A, Cao J, Wang D, Yenilmez E, Wang Q, Gibbons J F, Nishi Y, Dai H. Preferential growth of semiconducting single-walled carbon nanotubes by a plasma enhanced CVD method. Nano Letters, 2004, 4(2): 317–321

[38] Shi J, Lu Y F, Yi K J, Lin Y S, Liou S H, Hou J B, Wang X W. Direct synthesis of single-walled carbon nanotubes bridging metal electrodes by laser-assisted chemical vapor deposition. Applied Physics Letters, 2006, 89(8): 083105

[39] Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J, Xu C, Lee Y H, Kim S G, Rinzler A G, Colbert D T, Scuseria G E, Tomanek D, Fischer J E, Smalley R E. Crystalline ropes of metallic carbon nanotubes. Science, 1996, 273(5274): 483–487

[40] Bethune D S, Kiang C H, de Vries M S, Gorman G, Savoy R, Vazquez J, Beyers R. Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layerwalls. Nature, 1993, 363(6430): 605–607

[41] Kim P, Shi L, Majumdar A, McEuen P L. Mesoscopic thermal transport and energy dissipation in carbon nanotubes. Physica B, Condensed Matter, 2002, 323(1–4): 67–70

[42] Ural A, Li Y, Dai H. Electric-field-aligned growth of single-walled carbon nanotubes on surfaces. Applied Physics Letters, 2002, 81 (18): 3464–3466

[43] Falvo M R, Clary G J, Taylor R M 2nd, Chi V, Brooks F P Jr, Washburn S, Superfine R. Bending and buckling of carbon nanotubes under large strain. Nature, 1997, 389(6651): 582–584

[44] Vijayaraghavan A, Blatt S, Weissenberger D, Oron-Carl M, Hennrich F, Gerthsen D, Hahn H, Krupke R. Ultra-large-scale directed assembly of single-walled carbon nanotube devices. Nano Letters, 2007, 7(6): 1556–1560

[45] Rao S G, Huang L, Setyawan W, Hong S. Nanotube electronics: large-scale assembly of carbon nanotubes. Nature, 2003, 425 (6953): 36–37

[46] Zhang Y, Chang A, Cao J, Wang Q, Kim W, Li Y, Morris N, Yenilmez E, Kong J, Dai H. Electric-field-directed growth of aligned single-walled carbon nanotubes. Applied Physics Letters, 2001, 79(19): 3155–3157

[47] Huang S, Cai X, Liu J. Growth of millimeter-long and horizontally aligned single-walled carbon nanotubes on flat substrates. Journal of the American Chemical Society, 2003, 125(19): 5636–5637

[48] Tans S J, Devoret MH, Dai H, Thess A, Smalley R E, Geerligs L J, Dekker C. Individual single-wall carbon nanotubes as quantum wires. Nature, 1997, 386(6624): 474–477

[49] Xi N, Szu H, Buss J, Mack I. Carbon nanotube based spectrum infrared detectors. In: Proceedings of SPIE 5987, Electro-Optical and Infrared Systems: Technology and Applications II. 2005, 59870M

[50] Bockrath M, Cobden D H, McEuen P L, Chopra N G, Zettl A, Thess A, Smalley R E. Single-electron transport in ropes of carbon nanotubes. Science, 1997, 275(5308): 1922–1925

[51] Maehashi K, Ohno Y, Inoue K, Matsumoto K. Laser-resonance chirality selection in single-walled carbon nanotubes. AIP Conference Proceedings, 2005, 772(1): 1023–1024

[52] Xiong W, Gao Y, Mahjouri-Samani M, Zhou Y S, Mitchell M, J BPark, Lu Y F. Laser assisted fabrication for controlled singlewalled carbon nanotube synthesis and processing. Chinese Journal of Lasers, 2009, 36(12): 3125–3132

[53] Hayazawa N, Yano T,Watanabe H, Inouye Y, Kawata S. Detection of an individual single-wall carbon nanotube by tip-enhanced nearfield Raman spectroscopy. Chemical Physics Letters, 2003, 376(1– 2): 174–180

[54] Novotny L, Bian R X, Xie X S. Theory of nanometric optical tweezers. Physical Review Letters, 1997, 79(4): 645–648

[55] Downes A, Salter D, Elfick A. Heating effects in tip-enhanced optical microscopy. Optics Express, 2006, 14(12): 5216–5222

[56] Yao Y, Li Q, Zhang J, Liu R, Jiao L, Zhu Y T, Liu Z. Temperaturemediated growth of single-walled carbon-nanotube intramolecular junctions. Nature Materials, 2007, 6(4): 283–286

[57] Zhou Y S, Xiong W, Gao Y, Mahjouri-Samani M, Mitchell M, Jiang L, Lu Y F. Towards carbon-nanotube integrated devices: optically controlled parallel integration of single-walled carbon nanotubes. Nanotechnology, 2010, 21(31): 315601

[58] Xiong W, Zhou Y S, Mahjouri-Samani M, YangWQ, Yi K J, He X N, Lu Y F. Controlled-growth of single-walled carbon nanotubes using optical near-field effects. In: Proceedings of SPIE 7202, Laser-based Micro- and Nanopackaging and Assembly III. 2009, 720209

[59] Cantoro M, Hofmann S, Pisana S, Scardaci V, Parvez A, Ducati C, Ferrari A C, Blackburn A M, Wang K Y, Robertson J. Catalytic chemical vapor deposition of single-wall carbon nanotubes at low temperatures. Nano Letters, 2006, 6(6): 1107–1112

[60] van Dorp W F, Hagen C W. A critical literature review of focused electron beam induced deposition. Journal of Applied Physics, 2008, 104(8): 081301

[61] Brintlinger T, Chen Y, Dürkop T, Cobas E, Fuhrer M S, Barry J D, Melngailis J. Rapid imaging of nanotubes on insulating substrates. Applied Physics Letters, 2002, 81(13): 2454–2456

[62] Zhou Y S, Yi K J, Mahjouri-Samani M, Xiong W, Lu Y F, Liou S H. Image contrast enhancement in field-emission scanning electron microscopy of single-walled carbon nanotubes. Applied Surface Science, 2009, 255(7): 4341–4346

[63] Homma Y, Suzuki S, Kobayashi Y, Nagase M, Takagi D. Mechanism of bright selective imaging of single-walled carbon nanotubes on insulators by scanning electron microscopy. Applied Physics Letters, 2004, 84(10): 1750–1752

[64] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M Wei XIONG et al. Laser-based micro/nanofabrication in one, two and three dimensions 375 I, Grigorieva I V, Dubonos S V, Firsov A A. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005, 438(7065): 197–200

[65] Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim A K. Roomtemperature quantum Hall effect in graphene. Science, 2007, 315 (5817): 1379

[66] Lee C, Wei X, Kysar J W, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321(5887): 385–388

[67] Seol J H, Jo I, Moore A L, Lindsay L, Aitken Z H, Pettes M T, Li X, Yao Z, Huang R, Broido D, Mingo N, Ruoff R S, Shi L. Twodimensional phonon transport in supported graphene. Science, 2010, 328(5975): 213–216

[68] Vakil A, Engheta N. Transformation optics using graphene. Science, 2011, 332(6035): 1291–1294

[69] Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres NMR, Geim A K. Fine structure constant defines visual transparency of graphene. Science, 2008, 320(5881): 1308

[70] Li X, Zhu H,Wang K, Cao A,Wei J, Li C, Jia Y, Li Z, Li X,Wu D. Graphene-on-silicon Schottky junction solar cells. Advanced materials (Deerfield Beach, Fla.), 2010, 22(25): 2743–2748

[71] Park H, Rowehl J A, Kim K K, Bulovic V, Kong J. Doped graphene electrodes for organic solar cells. Nanotechnology, 2010, 21(50): 505204

[72] Feng L, Wu L, Wang J, Ren J, Miyoshi D, Sugimoto N, Qu X. Detection of a prognostic indicator in early-stage cancer using functionalized graphene-based peptide sensors. Advanced materials (Deerfield Beach, Fla.), 2012, 24(1): 125–131

[73] Myung S, Solanki A, Kim C, Park J, Kim K S, Lee K. Grapheneencapsulated nanoparticle-based biosensor for the selective detection of cancer biomarkers. Advanced materials (Deerfield Beach, Fla.), 2011, 23(19): 2221–2225

[74] Hwang J O, Park J S, Choi D S, Kim J Y, Lee S H, Lee K E, Kim Y H, Song M H, Yoo S, Kim S O. Workfunction-tunable, N-doped reduced graphene transparent electrodes for high-performance polymer light-emitting diodes. ACS Nano, 2012, 6(1): 159–167

[75] Hecht D S, Hu L, Irvin G. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Advanced materials (Deerfield Beach, Fla.), 2011, 23(13): 1482–1513

[76] Kalita G, Matsushima M, Uchida H, Wakita K, Umeno M. Graphene constructed carbon thin films as transparent electrodes for solar cell applications. Journal of Materials Chemistry, 2010, 20 (43): 9713–9717

[77] Xiong W, Zhou Y S, Jiang L J, Sarkar A, Mahjouri-Samani M, Xie Z Q, Gao Y, Ianno N J, Jiang L, Lu Y F. Single-step formation of graphene on dielectric surfaces. Advanced materials (Deerfield Beach, Fla.), 2013, 25(4): 630–634

[78] Wei Z,Wang D, Kim S, Kim S Y, Hu Y, Yakes MK, Laracuente A R, Dai Z, Marder S R, Berger C, KingWP, de HeerWA, Sheehan P E, Riedo E. Nanoscale tunable reduction of graphene oxide for graphene electronics. Science, 2010, 328(5984): 1373–1376

[79] Zhang Y, Guo L, Wei S, He Y, Xia H, Chen Q, Sun H, Xiao F. Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction. Nano Today, 2010, 5(1): 15–20

[80] Zhou Y, Bao Q, Varghese B, Tang L A L, Tan C K, Sow C, Loh K P. Microstructuring of graphene oxide nanosheets using direct laser writing. Advanced materials (Deerfield Beach, Fla.), 2010, 22 (1): 67–71

[81] Park J B, Xiong W, Gao Y, Qian M, Xie Z Q, Mitchell M, Zhou Y S, Han G H, Jiang L, Lu Y F. Fast growth of graphene patterns by laser direct writing. Applied Physics Letters, 2011, 98(12): 123109

[82] Park J B, Xiong W, Xie Z Q, Gao Y, Qian M, Mitchell M, Mahjouri-Samani M, Zhou Y S, Jiang L, Lu Y F. Transparent interconnections formed by rapid single-step fabrication of graphene patterns. Applied Physics Letters, 2011, 99(5): 053103

[83] Xiong W, Zhou Y S, Hou W J, Jiang L J, Gao Y, Fan L S, Jiang L, Silvain J F, Lu Y F. Direct writing of graphene patterns on insulating substrates under ambient conditions. Scientific Reports, 2014, 4: 4892

[84] Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S, Geim A K. Raman spectrum of graphene and graphene layers. Physical Review Letters, 2006, 97(18): 187401

[85] Casiraghi C, Hartschuh A, Qian H, Piscanec S, Georgi C, Fasoli A, Novoselov K S, Basko D M, Ferrari A C. Raman spectroscopy of graphene edges. Nano Letters, 2009, 9(4): 1433–1441

[86] Kuzmenko A B, van Heumen E, Carbone F, van der Marel D. Universal optical conductance of graphite. Physical Review Letters, 2008, 100(11): 117401

[87] Rigo V A, Martins T B, da Silva A J R, Fazzio A, Miwa R H. Electronic, structural, and transport properties of Ni-doped graphene nanoribbons. Physical Review B: Condensed Matter and Materials Physics, 2009, 79(7): 075435

[88] Giovannetti G, Khomyakov P A, Brocks G, Karpan V M, van den Brink J, Kelly P J. Doping graphene with metal contacts. Physical Review Letters, 2008, 101(2): 026803

[89] David J M, Buehler M G. A numerical analysis of various cross sheet resistor test structures. Solid-State Electronics, 1977, 20(6): 539–543

[90] Fang T, Konar A, Xing H, Jena D. Carrier statistics and quantum capacitance of graphene sheets and ribbons. Applied Physics Letters, 2007, 91(9): 092109

[91] Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 2009, 324(5932): 1312–1314

[92] Gómez-Navarro C, Weitz R T, Bittner A M, Scolari M, Mews A, Burghard M, Kern K. Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Letters, 2007, 7 (11): 3499–3503

[93] Eda G, Ball J, Mattevi C, Acik M, Artiglia L, Granozzi G, Chabal Y, Anthopoulos T D, Chhowalla M. Partially oxidized graphene as a precursor to graphene. Journal of Materials Chemistry, 2011, 21 (30): 11217–11223

[94] Guo L, Zhang Y, Han D, Jiang H, Wang D, Li X, Xia H, Feng J, Chen Q, Sun H. Laser-mediated programmable N doping and simultaneous reduction of graphene oxides. Advanced Optical Materials, 2014, 2(2): 120–125

[95] Gates B D, Xu Q, Love J C, Wolfe D B, Whitesides G M. Unconventional nanofabrication. Annual Review of Materials 376 Front. Optoelectron. 2015, 8(4): 351–378 Research, 2004, 34(1): 339–372

[96] Gates B D, Xu Q, Stewart M, Ryan D, Willson C G, Whitesides G M. New approaches to nanofabrication: molding, printing, and other techniques. Chemical Reviews, 2005, 105(4): 1171–1196

[97] Dixon C J, Curtines O W. Nanotechnology: Nanofabrication, Patterning, and Self Assembly. New York: Nova Science Publishers Inc., 2009

[98] Mailly D. Nanofabrication techniques. European Physical Journal. Special Topics, 2009, 172(1): 333–342

[99] Wiley B J, Qin D, Xia Y. Nanofabrication at high throughput and low cost. ACS Nano, 2010, 4(7): 3554–3559

[100] Marrian C R K, Dobisz E A, Glembocki O J. Nanofabrication – how small can devices get. R & D Magazine, 1992, 34(2): 123

[101] Marrian C R K, Tennant DM. Nanofabrication. Journal of Vacuum Science & Technology. A, Vacuum, Surfaces, and Films, 2003, 21 (5): S207–S215

[102] Gattass R R, Mazur E. Femtosecond laser micromachining in transparent materials. Nature Photonics, 2008, 2(4): 219–225

[103] Li L, Fourkas J T. Multiphoton polymerization. Materials Today, 2007, 10(6): 30–37

[104] Park S H, Yang D Y, Lee K S. Two-photon stereolithography for realizing ultraprecise three-dimensional nano/microdevices. Laser & Photonics Reviews, 2009, 3(1–2): 1–11

[105] Lee K, Yang D, Park S H, Kim R H. Recent developments in the use of two-photon polymerization in precise 2D and 3D microfabrications. Polymers for Advanced Technologies, 2006, 17(2): 72–82

[106] Chong T C, Hong MH, Shi L P. Laser precision engineering: from microfabrication to nanoprocessing. Laser & Photonics Reviews, 2010, 4(1): 123–143

[107] Hell SW,Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Optics Letters, 1994, 19(11): 780–782

[108] Feigel A, Veinger M, Sfez B, Arsh A, Klebanov M, Lyubin V. Three-dimensional simple cubic woodpile photonic crystals made from chalcogenide glasses. Applied Physics Letters, 2003, 83(22): 4480–4482

[109] Gomez D, Goenaga I, Lizuain I, Ozaita M. Femtosecond laser ablation for microfluidics. Optical Engineering (Redondo Beach, Calif.), 2005, 44(5): 051105

[110] Korte F, Serbin J, Koch J, Egbert A, Fallnich C, Ostendorf A, Chichkov B N. Towards nanostructuring with femtosecond laser pulses. Applied Physics. A, Materials Science & Processing, 2003, 77(2): 229–235

[111] Suriano R, Kuznetsov A, Eaton S M, Kiyan R, Cerullo G, Osellame R, Chichkov B N, Levi M, Turri S. Femtosecond laser ablation of polymeric substrates for the fabrication of microfluidic channels. Applied Surface Science, 2011, 257(14): 6243–6250

[112] Chichkov B N, Momma C, Nolte S, Von Alvensleben F, Tünnermann A. Femtosecond, picosecond and nanosecond laser ablation of solids. Applied Physics. A, Materials Science & Processing, 1996, 63(2): 109–115

[113] Sun H B, Xu Y, Juodkazis S, Sun K, Watanabe M, Matsuo S, Misawa H, Nishii J. Arbitrary-lattice photonic crystals created by multiphoton microfabrication. Optics Letters, 2001, 26(6): 325– 327

[114] Zhou G, Gu M. Direct optical fabrication of three-dimensional photonic crystals in a high refractive index LiNbO3 crystal. Optics Letters, 2006, 31(18): 2783–2785

[115] Gu M, Jia B, Li J, Ventura M J. Fabrication of three-dimensional photonic crystals in quantum-dot-based materials. Laser & Photonics Reviews, 2010, 4(3): 414–431

[116] Fischer P, McWilliam A, Paterson L, Brown C T A, Sibbett W, Dholakia K, MacDonald M P. Two-photon ablation with 1278 nm laser radiation. Journal of Optics. A, Pure and Applied Optics, 2007, 9(6): S19–S23

[117] Waldbaur A, Rapp H, L nge K, Rapp B E. Let there be chiptowards rapid prototyping of microfluidic devices: one-step manufacturing processes. Analytical Methods, 2011, 3(12): 2681–2716

[118] Goldman J R, Prybyla J A. Ultrafast dynamics of laser-excited electron distributions in silicon. Physical Review Letters, 1994, 72 (9): 1364–1367

[119] Xiong W, Zhou Y S, He X N, Gao Y, Mahjouri-Samani M, Baldacchini T, Lu Y F. Three-dimensional sub-wavelength fabrication by integration of additive and subtractive femtosecond- laser direct writing. In: Proceedings of MRS, Volume 1499, 2013

[120] Zappe H P. Fundamentals of Micro-Optics. Cambridge, New York: Cambridge University Press, 2010

[121] Qin D, Xia Y, Whitesides G M. Soft lithography for micro- and nanoscale patterning. Nature Protocols, 2010, 5(3): 491–502

Wei XIONG, Yunshen ZHOU, Wenjia HOU, Lijia JIANG, Masoud MAHJOURI-SAMANI, Jongbok PARK, Xiangnan HE, Yang GAO, Lisha FAN, Tommaso BALDACCHINI, Jean-Francois SILVAIN, Yongfeng LU. Laser-based micro/nanofabrication in one, two and three dimension[J]. Frontiers of Optoelectronics, 2015, 8(4): 351. Wei XIONG, Yunshen ZHOU, Wenjia HOU, Lijia JIANG, Masoud MAHJOURI-SAMANI, Jongbok PARK, Xiangnan HE, Yang GAO, Lisha FAN, Tommaso BALDACCHINI, Jean-Francois SILVAIN, Yongfeng LU. Laser-based micro/nanofabrication in one, two and three dimension[J]. Frontiers of Optoelectronics, 2015, 8(4): 351.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!