Journal of Innovative Optical Health Sciences, 2011, 4 (3): 289, Published Online: Jan. 10, 2019  

PROBING THE IMPACT OF GAMMA-IRRADIATION ON THE METABOLIC STATE OF NEURAL STEM AND PRECURSOR CELLS USING DUAL-WAVELENGTH INTRINSIC SIGNAL TWO-PHOTON EXCITED FLUORESCENCE

Author Affiliations
1 Laser Microbeam and Medical Program Beckman Laser Institute, University of California Irvine, 1002 Health Sciences Road East, Irvine, CA 92612, USA
2 Department of Radiation Oncology University of California, Irvine, California 92697, USA
Abstract
Two-photon excited fluorescence (TPEF) spectroscopy and imaging were used to investigate the effects of gamma-irradiation on neural stem and precursor cells (NSPCs). While the observed signal from reduced nicotinamide adenine dinucleotide (NADH) was localized to the mitochondria, the signal typically associated with oxidized flavoproteins (Fp) was distributed diffusely throughout the cell. The measured TPEF emission and excitation spectra were similar to the established spectra of NAD(P)H and Fp. Fp fluorescence intensity was markedly increased by addition of the electron transport chain (ETC) modulator menadione to the medium, along with a concomitant decrease in the NAD(P)H signal. Three-dimensional (3D) neurospheres were imaged to obtain the cellular metabolic index (CMI), calculated as the ratio of Fp to NAD(P)H fluorescence intensity. Radiation effects were found to differ between low-dose (≤ 50 cGy) and high-dose (≥ 50 cGy) exposures. Low-dose irradiation caused a marked drop in CMI values accompanied by increased cellular proliferation. At higher doses, both NAD(P)H and Fp signals increased, leading to an overall elevation in CMI values. These findings underscore the complex relationship between radiation dose, metabolic state, and proliferation status in NSPCs and highlight the ability of TPEF spectroscopy and imaging to characterize metabolism in 3D spheroids.
References

[1] O. K. Abayomi, "Pathogenesis of irradiationinduced cognitive dysfunction," Acta. Oncol. 35(6), 659-663 (1996).

[2] P. J. Tofilon, J. R. Fike, "The radioresponse of the central nervous system: A dynamic process," Radiat. Res. 153(4), 357-370 (2000).

[3] C. A. Meyers, P. D. Brown, "Role and relevance of neurocognitive assessment in clinical trials of patients with CNS tumors," J. Clin. Oncol. 24(8), 1305-1309 (2006).

[4] J. R. Fike, S. Rosi, C. L. Limoli, "Neural precursor cells and central nervous system radiation sensitivity," Semin. Radiat. Oncol. 19(2), 122-132 (2009).

[5] C. D. Clelland, M. Choi, C. Romberg, G. D. Clemenson, Jr., A. Fragniere, P. Tyers, S. Jessberger, L. M. Saksida, R. A. Barker, F. H. Gage, T. J. Bussey, "A functional role for adult hippocampal neurogenesis in spatial pattern separation," Science 325 (5937), 210-213 (2009).

[6] C. A. Meyers, F. Geara, P. F. Wong, W. H. Morrison, "Neurocognitive effects of therapeutic irradiation for base of skull tumors," Int. J. Radiat. Oncol. Biol. Phys. 46(1), 51-55 (2000).

[7] T. D. Palmer, J. Takahashi, F. H. Gage, "The adult rat hippocampus contains primordial neural stem cells," Mol. Cell. Neurosci. 8(6), 389-404 (1997).

[8] F. H. Gage, "Mammalian neural stem cells," Science 287(5457), 1433-1438 (2000).

[9] E. Giedzinski, R. Rola, J. R. Fike, C. L. Limoli, "Efficient production of reactive oxygen species in neural precursor cells after exposure to 250 MeV protons," Radiat. Res. 164(4 Pt 2), 540-544 (2005).

[10] C. Limoli, E. Giedzinski, R. Rola, S. Otsuka, T. Palmer, J. Fike, "Radiation response of neural precursor cells: Linking cellular sensitivity to cell cycle checkpoints, apoptosis and oxidative stress," Radiat. Res. 161, 17-27 (2004).

[11] C. L. Limoli, E. Giedzinski, J. Baure, R. Rola, J. R. Fike, "Altered growth and radiosensitivity in neural precursor cells subjected to oxidative stress," Int. J. Radiat. Biol. 82(9), 640-647 (2006).

[12] C. L. Limoli, E. Giedzinski, J. Baure, R. Rola, J. R. Fike, "Redox changes induced in hippocampal precursor cells by heavy ion irradiation," Radiat. Environ. Biophys. 46(2), 167-172 (2007).

[13] M. M. Acharya, M. L. Lan, V. H. Kan, N. H. Patel, E. Giedzinski, B. P. Tseng, C. L. Limoli, "Consequences of ionizing radiation-induced damage in human neural stem cells," Free Radic. Biol. Med. 49(2), 1846-1855 (2010).

[14] J. R. Fike, R. Rola, C. L. Limoli, "Radiation response of neural precursor cells," Neurosurg. Clin. North Am. 18(1), 115 (2007).

[15] A. Boveris, "Mitochondrial production of superoxide radical and hydrogen peroxide," Adv. Exp. Med. Biol. 78, 67-82 (1977).

[16] A. Boveris, E. Cadenas, "Production of superoxide radicals and hydrogen peroxide in mitochondria," in Superoxide Dismutase, Vol. II, L. W. Oberley, ed., CRC Press, Boca Raton, FL, pp. 15-30.

[17] D. Voet, J. G. Voet, C. W. Pratt, "Electron transport and oxidative phosphorylation, Chapter 17, in Fundamentals of Biochemistry, John Wiley & Sons, Inc, 492-525 (1999).

[18] J. R. Collins-Underwood, W. Zhao, J. G. Sharpe, M. E. Robbins, "NADPH oxidase mediates radiation- induced oxidative stress in rat brain microvascular endothelial cells," Free Radic. Biol. Med. 45(6), 929-938 (2008).

[19] Y. Wang, L. Liu, S. K. Pazhanisamy, H. Li, A. Meng, D. Zhou, "Total body irradiation causes residual bone marrow injury by induction of persistent oxidative stress in murine hematopoietic stem cells," Free Radic. Biol. Med. 48(2), 348-356 (2010).

[20] B. Chance, H. Baltscheffsky, "Respiratory enzymes in oxidative phosphorylation," J. Biol. Chem. 233(3), 736-739 (1958).

[21] B. Chance, P. Cohen, G. Jobsis, B. Schoener, "Intracellular oxidation-reduction states in vivo," Science 137, 499-508 (1962).

[22] B. Chance, B. Schoener, R. Oshino, F. Itshak, Y. Nakase, "Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples. NADH and flavoprotein fluorescence signals," J. Biol. Chem. 254(11), 11 (1979).

[23] J. V. Rocheleau, H. W. Steven, D. W. Piston, "Quantitative NAD(P)H/flavoprotein auto- fluorescence imaging reveals metabolic mechanisms of pancreatic islet pyruvate response," J. Biol. Chem. 279(30), 31780-31787 (2004).

[24] L. M. Tiede, S. M. Rocha-Sanchez, R. Hallworth, M. G. Nichols, K. Beisel, "Determination of hair cell metabolic state in isolated cochlear preparations by two-photon microscopy," J. Biomed. Opt. 12(2), 021004 (2007).

[25] C. J. Zhuo Shuangmu, X. Jiang, X. Cheng, S. Xie, "Visualizing extracellular matrix and sensing fibroblasts metabolism in human dermis by nonlinear spectral imaging," Skin Res. Technol. 13(4), 406-411 (2007).

[26] S. Zhuo, J. Chen, B. Yu, X. Jiang, T. Luo, Q. Liu, R. Chen, S. Xie, "Nonlinear optical microscopy of the bronchus," J. Biomed. Opt. 13(5), 7 (2008).

[27] V. del Marisol, J. M. R. Cano, C. Y. Park, X. Gao, K. Mori, R. S.Chuck, P. L.Gehllach, "Demonstration by redox fluorometry that sulforaphane protects retinal pigment epithelial cells against oxidative stress," Invest. Ophthalmol. Visual Sci. 49(6), 2606-2612 (2008).

[28] M. Ranji, M. Matsubara, B. G. Leshnower, R. H. Hinmon, D. L. Jaggard, B. Chance, R. C. Gorman, J. H. Gorman, "Quantifying acute myocardial injury using ratiometric fluorometry," IEEE Transact. Biomed. Eng. 56(5), 1556-1563 (2009).

[29] Z. Zhang, D. Blessington, H. Li, T. M. Busch, J. Glickson, Q. Luo, B. Chance, G. Zheng, "Redox ratio of mitochondria as an indicator for the response of photodynamic therapy," J. Biomed. Opt. 9(4), 772-778 (2004).

[30] L. Z. J. Li, Z. R. T. Zhong, L. Moon, E. J. Kim, H. Qiao, S. Pickup, M. J. Hendrix, D. Leeper, B. Chance, J. D. Glickson, "Predicting melanoma metastatic potential by optical and magnetic resonance imaging," in Oxygen Transport to Tissue XXVIII, D. J. Maguire, D. F. Bruely, D. K. Harrison, ed. pp. 67-78 (2007).

[31] L. Z. Li, R. Zhou, H. N. Xu, L. Moon, T. Zhong, E. J. Kim, H. Qiao, R. Reddy, D. Leeper, B. Chance, J. D. Glicksona, "Quantitative magnetic resonance and optical imaging biomarkers of melanoma metastatic potential," PNAS 106(16), 6608-6613 (2009).

[32] J. Smith, E. Ladi, M. Mayer-Prooschel, M. Noble, "Redox state is a central modulator of the balance between self-renewal and differentiation in a dividing glial precursor cell," PNAS 97(18), 10032-10037 (2000).

[33] J. M. G. Reyes, S. Fermanian, F. Yang, S.-Y. Zhou, S. Herretes,D.B.Murphy, J. H. Elisseeff,R. S. Chuck, "Metabolic changes in mesenchymal stem cells in osteogenic medium measured by autofluorescence spectroscopy," Stem Cells 24, 1213-1217 (2006).

[34] S. Huang, A. A. Heikal, W. W. Webb, "Two-photon fluorescence spectroscopy and microscopy of NAD (P)H and flavoprotein," Biophys. J. 82(5), 2811-2825 (2002).

[35] R. Scholz,R.G.Thurman, J.R.Williamson, B.Chance, T. Bucher, "Flavin and pyridine nucleotide oxidationreduction changes in perfused rat liver. I. Anoxia and subcellular localization of fluorescent flavoproteins," J. Biol. Chem. 244(9), 2317-2324 (1969).

[36] J. R. Koke, W. Wylie, M. Wills, "Sensitivity of flavoprotein fluorescence to oxidative state in single isolated heart cells," Cytobios. 32(127-128), 139-145 (1981).

[37] A. Kindzelskii, H. R. Petty, "Fluorescence spectroscopic detection of mitochondrial flavoprotein redox oscillations and transient reduction of the NADPH oxidase-associated flavoprotein in leukocytes," Eur. Biophys. J. 33(4), 291-299 (2004).

[38] D. Chorvat Jr., J. Kirchnerova, M. Cagalinec, J. Smolka, A. Mateasik, A. Chorvatova, "Spectral unmixing of flavin autofluorescence components in cardiacmyocytes," Biophys. J. 89(6), L55-L57 (2005).

[39] G. H. Patterson, S. M. Knobel, P. Arkhammar, O. Thastrup, D. W. Piston, "Separation of the glucosestimulated cytoplasmic and mitochondrial NAD(P) H responses in pancreatic islet b cells," Proc. Natl. Acad. Sci. 97(10), 5 (2000).

[40] A. Shiino, M. Matsuda, B. Chance, "Three-dimensional redox imaging of frozen-quenched brain and other organs," in Methods in Enzymology, Vol. 352, Elsevier, p. 8 (2002).

[41] W. S. Kunz, W. Kunz, "Contribution of different enzymes to flavoprotein fluorescence of isolated rat liver mitochondria," Biochim. Biophys. Acta. 841 (3), 237-246 (1985).

[42] V. Shneyvays, D. Leshem, Y. Shmist, T. Zinman, A. Shainberg, "Effects of menadione and its derivative on cultured cardiomyocytes with mitochondrial disorders," J. Mol. Cell. Cardiol. 39(1), 149-158 (2005).

[43] J. K. Leach, G. Van Tuyle, P. S. Lin, R. Schmidt- Ullrich, R. B. Mikkelsen, "Ionizing radiationinduced, mitochondria-dependent generation of reactive oxygen/nitrogen," Cancer Res. 61(10), 3894-3901 (2001).

[44] P. Venkatachalam, S. M. de Toledo, B. N. Pandey, L. A. Tephly, A. B. Carter, J. B. Little, D. R. Spitz, E. I. Azzam, "Regulation of normal cell cycle progression by flavin-containing oxidases," Oncogene 27(1), 20-31 (2008).

[45] M. G. Vander Heiden, L. C. Cantley, C. B. Thompson, "Understanding the Warburg effect: The metabolic requirements of cell proliferation," Science 324(5930), 1029-1033 (2009).

[46] N. C. Denko, "Hypoxia, HIF1 and glucose metabolism in the solid tumour," Nat. Rev. Cancer 8(9), 705-713 (2008).

[47] D. R. Spitz, J. E. Sim, L. A. Ridnour, S. S. Galoforo, Y. J. Lee, "Glucose deprivation-induced oxidative stress in human tumor cells. A fundamental defect in metabolismff Ann. N. Y. Acad. Sci. 899, 349-362 (2000).

[48] D. R. Spitz, E. I. Azzam, J. J. Li, D. Gius, "Metabolic oxidation/reduction reactions and cellular responses to ionizing radiation: A unifying concept in stress response biology," Cancer Metastasis Rev. 23(3-4), 311-322 (2004).

[49] E. I. Azzam, S. M. de Toledo, J. B. Little, "Stress signaling from irradiated to non-irradiated cells," Curr. Cancer Drug Targets 4(1), 53--64 (2004).

[50] S. M. de Toledo, N. Asaad, P. Venkatachalam, L. Li, R. W. Howell, D. R. Spitz, E. I. Azzam, "Adaptive responses to low-dose/low-dose-rate gamma rays in normal human fibroblasts: The role of growth architecture and oxidative metabolism," Radiat. Res. 166(6), 849-857 (2006).

[51] K. Fishman, J. Baure, Y. Zou, T. T. Huang, M. Andres-Mach, R. Rola, T. Suarez, M. Acharya, C. L. Limoli, K. R. Lamborn, J. R. Fike, "Radiationinduced reductions in neurogenesis are ameliorated in mice deficient in CuZnSOD or MnSOD," Free Radic. Biol. Med. 47(10), 1459-1467 (2009).

[52] R. Rola, Y. Zou, T. T. Huang, K. Fishman, J. Baure, S. Rosi, H. Milliken, C. L. Limoli, J. R. Fike, "Lack of extracellular superoxide dismutase (EC-SOD) in the microenvironment impacts radiation-induced changes in neurogenesis," Free Radic. Biol. Med. 42(8), 1133-1145 (2007); discussion 1131-112.

[53] H. Matsui, Y. Murata, K.-I. Hirano, T. Sasaki, R. Shiba, H. Muto, T. Ono, "Hydrogen peroxidinduced cellular injury is associated with increase in endogenous fluorescence from rat gastric mucosal epithelial cell culture: A new method for detecting oxidative cellular onjury by fluorescence measurement," J. Gastroenterol. 33, 8 (1998).

[54] S. W. Tuttle, A. Maity, P. R. Oprysko, A. V. Kachur, I. S. Ayene, J. E. Biaglow, C. J. Koch, "Detection of reactive oxygen species via endogenous oxidative pentose phosphate cycle activity in response to oxygen concentration: Implications for the mechanism of HIF-1alpha stabilization under moderate hypoxia," J. Biol. Chem. 282(51), 36790-36796 (2007).

[55] S. Tuttle, T. Stamato, M. L. Perez, J. Biaglow, "Glucose-6-phosphate dehydrogenase and the oxidative pentose phosphate cycle protect cells against apoptosis induced by low doses of ionizing radiation," Radiat. Res. 153(6), 781-787 (2000).

[56] J. K. Leach, S. M. Black, R. K. Schmidt-Ullrich, R. B. Mikkelsen, "Activation of constitutive nitricoxide synthase activity is an early signaling event induced by ionizing radiation," J. Biol. Chem. 277 (18), 15400-15406 (2002).

[57] D. N. Criddle, S. Gillies, H. K. Baumgartner-Wilson, M. Jaffar, E. C. Chinje, S. Passmore, M. Chvanov, S. Barrow, O. V. Gerasimenko, A. V. Tepikin, R. Sutton, O. H. Petersen, "Menadione-induced reactive oxygen species generation via redox cycling promotes apoptosis of murine pancreatic acinar cells," J. Biol. Chem. 281(52), 40485-40492 (2006).

[58] M. Ranji, S. Kanemoto, M. Matsubara, M. A. Grosso, J. H. Gorman, 3rd, R. C. Gorman, D. L. Jaggard, B. Chance, "Fluorescence spectroscopy and imaging of myocardial apoptosis," J. Biomed. Opt. 11(6), 064036 (2006).

[59] S. Corda, C. Laplace, E. Vicaut, J. Duranteau, "Rapid reactive oxygen species production by mitochondria in endothelial cells exposed to tumor necrosis factor-alpha is mediated by ceramide," Am. J. Respir. Cell. Mol. Biol. 24(6), 762-768 (2001).

TATIANA B. KRASIEVA, ERICH GIEDZINSKI, KATHERINE TRAN, MARY LAN, CHARLES L. LIMOLI, BRUCE J. TROMBERG. PROBING THE IMPACT OF GAMMA-IRRADIATION ON THE METABOLIC STATE OF NEURAL STEM AND PRECURSOR CELLS USING DUAL-WAVELENGTH INTRINSIC SIGNAL TWO-PHOTON EXCITED FLUORESCENCE[J]. Journal of Innovative Optical Health Sciences, 2011, 4(3): 289.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!