发光学报, 2016, 37 (5): 583, 网络出版: 2016-05-11  

基于人造金刚石晶体的拉曼激光器研究进展

Development of Raman Laser Based on Synthetic Diamond Crystal
作者单位
1 发光学及应用国家重点实验室 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
2 中国科学院大学, 北京 100049
摘要
受激拉曼散射是一种重要的非线性光学频率变换技术,在拓展激光波段方面有十分广泛的应用前景。因此,寻找具有优良光学性质的拉曼介质,提高拉曼激光器性能,具有重要的研究价值。相比于传统的固体拉曼晶体,人造金刚石晶体具有拉曼增益系数大、拉曼频移大、导热率高和透过性好等显著优点,基于人造金刚石晶体的拉曼激光器能够获得更高的输出功率和转换效率。本文简要介绍了化学气相沉积法(CVD)制备的金刚石晶体的光学性质和热学特性,总结了基于人造金刚石晶体的拉曼激光器在紫外波段、可见光波段及红外波段的研究现状,并对其发展进行了展望。
Abstract
Stimulated Raman scattering(SRS) is a kind of efficient nonlinear optical frequency conversion technology to extend laser wavelength range, and it has extensive prospects for various applications. Thus, it is important to develop new Raman medium with excellent optical properties and improve the performance of Raman laser. Compared with conventional Raman materials, diamond grown by chemical vapor deposition (CVD) has high Raman gain coefficient, large Raman frequency shift, outstanding thermal conductivity and broad optical transmission range. These properties are beneficial to raise average output power and conversion efficiency of Raman laser. In this paper, the optical and thermal properties of the CVD diamond were introduced briefly, and researches on Raman lasers based on synthetic crystal diamond were summarized in ultraviolet, visible and infrared range, respectively. Finally, the development of diamond Raman lasers was forecasted.
参考文献

[1] TAKEI N, SUZUKI S, KANNARI F. 20-Hz operation of an eye-safe cascade Raman laser with a Ba(NO3)2 crystal [J]. Appl. Phys. B, 2002, 74(6):521-527.

[2] MURRAY J T, POWELL R C, PEYGHAMBARIAN N, et al.. Generation of 1.5-μm radiation through intracavity solid-state Raman shifting in Ba(NO3)2 nonlinear crystals [J]. Opt. Lett., 1995, 20(9):1017-1019.

[3] MOCHALOV I V. Laser and nonlinear properties of the potassium gadolinium tungstate laser crystal KGd(WO4)2∶Nd3+-(KGW∶Nd) [J]. Opt. Eng., 1997, 36(6):1660-1669.

[4] MILDREN R P, PASK H M, CONVERY M, et al.. Efficient diode-pumped yellow, orange and red laser sources based on stimulated Raman scattering in KGd(WO4)2 [C]. Advanced Solid-State Photonics, Santa Fe, United States, 2004:208.

[5] SU K W, CHANG Y T, CHEN Y F. Power scale-up of the diode-pumped actively Q-switched Nd∶YVO4 Raman laser with an undoped YVO4 crystal as a Raman shifter [J]. Appl. Phys. B, 2007, 88(1):47-50.

[6] L Y F, CHENG W B, XIONG Z, et al.. Efficient CW laser at 559 nm by intracavity sum-frequency mixing in a self-Raman Nd∶YVO4 laser under direct 880 nm diode laser pumping [J]. Laser Phys. Lett., 2010, 7(11):787-789.

[7] PASK H M, PIPER J A. Efficient all-solid-state yellow laser source producing 1.2-W average power [J]. Opt. Lett., 1999, 24(21):1490-1492.

[8] BUTLER J E. Optical probing of diamond chemical vapor deposition [J]. Carbon, 1990, 28(6):809.

[9] ZHAN R J, GAO K L, ZOU Z P, et al.. Growth of diamond-like films by dc plasma chemical vapor deposition [J]. Chin. Phys. Lett., 1990, 7(10):445-448.

[10] JAMISON K D, SCHMIDT H K. Doped diamond laser: US, 5504767 [P]. 1996-04-02.

[11] PRAWER S, NEMANICH R J. Raman spectroscopy of diamond and doped diamond [J]. Philos. Trans. Royal Soc. A: Math. Phys. Eng. Sci., 2004, 362(1824):2537-2565.

[12] GONCHAROV A F, CROWHURST J C. Pulsed laser Raman spectroscopy in the laser-heated diamond anvil cell [J]. Rev. Sci. Instrum., 2005, 76(6):063905-1-5.

[13] TURRI G, CHEN Y, BASS M, et al.. Optical absorption, depolarization, and scatter of epitaxial single-crystal chemical-vapor-deposited diamond at 1.064 μm [J]. Opt. Eng., 2007, 46(6):064002.

[14] GRANADOS E, SPENCE D J, MILDREN R P. Deep ultraviolet diamond Raman laser [J]. Opt. Express, 2011, 19(11):10857-10863.

[15] MILDREN R P, BUTLER J E, RABEAU J R. CVD-diamond external cavity Raman laser at 573 nm [J]. Opt. Express, 2008, 16(23):18950-18955.

[16] MILDREN R P, RABEAU J R. Optical Engineering of Diamond [M]. Chichester: John Wiley & Sons, 2013.

[17] SABELLA A, PIPER J A, MILDREN R P. 1 240 nm diamond Raman laser operating near the quantum limit [J]. Opt. Lett., 2010, 35(23):3874-3876.

[18] SABELLA A, PIPER J, MILDREN R P. Efficient 1 064 nm conversion to the eye-safe region using an external cavity diamond Raman laser [C]. Proceedings of The International Quantum Electronics Conference and Conference on Lasers and Electro-Optics Pacific Rim 2011, Sydney, Australia, 2011:C725.

[19] SABELLA A, PIPER J A, MILDREN R P. Efficient conversion of a 1.064 μm Nd∶YAG laser to the eye-safe region using a diamond Raman laser [J]. Opt. Express, 2011, 19(23):23554-23560.

[20] MCKAY A, KITZLER O, LIU H, et al.. High average power (11 W) eye-safe diamond Raman laser [J]. SPIE, 2012, 8551:85510U.

[21] MCKAY A, LIU H, KITZLER O, et al.. An efficient 14.5 W diamond Raman laser at high pulse repetition rate with first (1 240 nm) and second (1 485 nm) Stokes output [J]. Laser Phys. Lett., 2013, 10(10):105801.

[22] SABELLA A, PIPER J A, MILDREN R P. Diamond Raman laser with continuously tunable output from 3.38 to 3.80 μm [J]. Opt. Lett., 2014, 39(13):4037-4040.

[23] KITZLER O, MCKAY A, MILDREN R. CW diamond laser architecture for high average power Raman beam conversion [C]. Proceedings of The International Quantum Electronics Conference and Conference on Lasers and Electro-Optics Pacific Rim 2011, Sydney, Australia, 2011:C1215.

[24] KITZLER O, MCKAY A, MILDREN R P. Continuous-wave wavelength conversion for high-power applications using an external cavity diamond Raman laser [J]. Opt. Lett., 2012, 37(14):2790-2792.

[25] WILLIAMS R J, KITZLER O, MCKAY A, et al.. Investigating diamond Raman lasers at the 100 W level using quasi-continuous-wave pumping [J]. Opt. Lett., 2014, 39(14):4152-4155.

[26] WILLIAMS R J, NOLD J, STRECKER M, et al.. Efficient Raman frequency conversion of high-power fiber lasers in diamond [J]. Laser Photon. Rev., 2015, 9(4):405-411.

[27] SCHLOSSER P J, PARROTTA D C, SAVITSKI V G, et al.. Intracavity Raman conversion of a red semiconductor disk laser using diamond [J]. Opt. Express, 2015, 23(7):8454-8461.

[28] LUBEIGT W, BONNER G M, HASTIE J E, et al.. An intra-cavity Raman laser using synthetic single-crystal diamond [J]. Opt. Express, 2010, 18(16):16765-16770.

[29] SAVITSKI V G, FRIEL I, HASTIE J E, et al.. Characterization of single-crystal synthetic diamond for multi-watt continuous-wave Raman lasers [J]. IEEE J. Quant. Electron., 2012, 48(3):328-337.

[30] PARROTTA D C, KEMP A J, DAWSON M D, et al.. Tunable diamond Raman laser intracavity-pumped by an InGaAs semiconductor disk laser [C]. Advanced Solid-State Photonics, Optical Society of America, San Diego, United States, 2012:AM5A.5.

[31] PARROTTA D C, KEMP A J, DAWSON M D, et al.. Multiwatt, continuous-wave, tunable diamond Raman laser with intracavity frequency-doubling to the visible region [J]. IEEE J. Sel. Top. Quant. Electron., 2013, 19(4):1400108.

[32] LUBEIGT W, SAVITSKI V G, BONNER G M, et al.. 1.6 W continuous-wave Raman laser using low-loss synthetic diamond [J]. Opt. Express, 2011, 19(7):6938-6944.

[33] FEVE J P M, BOHN M J, BRASSEUR J K, et al.. High power Raman diamond laser [J]. SPIE, 2011, 7921:79121P.

[34] JELNEK M, KITZLER O, JELNKOV H, et al.. CVD-diamond external cavity Raman laser operating at 1 632 nm [C]. Proceedings of The International Quantum Electronics Conference and Conference on Lasers and Electro-Optics Pacific Rim 2011, Sydney, Australia, 2011:C956.

[35] 潘其坤. 中红外固体激光器研究进展 [J]. 中国光学, 2015, 8(4):557-566.PAN Q K. Progress of mid-infrared solid-state laser [J]. Chin. Opt., 2015, 8(4):557-566. (in Chinese)

[36] KLEMENS P G. Anharmonic decay of optical phonons [J]. Phys. Rev., 1966, 148(2):845-848.

[37] SPENCE D J, GRANADOS E, MILDREN R P. Mode-locked picosecond diamond Raman laser [J]. Opt. Lett., 2010, 35(4):556-558.

[38] MURTAGH M, LIN J P, MILDREN R P, et al.. Efficient diamond Raman laser generating 65 fs pulses [J]. Opt. Express, 2015, 23(12):15504-15513.

[39] SAVITSKI V, HASTIE J, DAWSON M, et al.. Multi-watt continuous-wave diamond Raman laser at 1 217 nm [C]. CLEO/Europe and EQEC 2011 Conference Digest, Munich, Germany, 2011:PDA_2.

[40] WARRIER A M, LIN J P, PASK H M, et al.. Highly efficient picosecond diamond Raman laser at 1 240 and 1 485 nm [J]. Opt. Express, 2014, 22(3):3325-3333.

陈志琼, 付喜宏, 张俊, 彭航宇. 基于人造金刚石晶体的拉曼激光器研究进展[J]. 发光学报, 2016, 37(5): 583. CHEN Zhi-qiong, FU Xi-hong, ZHANG Jun, PENG Hang-yu. Development of Raman Laser Based on Synthetic Diamond Crystal[J]. Chinese Journal of Luminescence, 2016, 37(5): 583.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!