中国激光, 2019, 46 (5): 0508008, 网络出版: 2019-11-11   

光纤式相干拉曼散射成像光源研究进展 下载: 1474次

Advances in Fiber Laser Sources for Coherent Raman Scattering Microscopy
作者单位
1 上海理工大学光电信息与计算机工程学院, 上海 200093
2 复旦大学应用表面物理国家重点实验室和物理学系, 上海 200433
3 华东师范大学精密光谱科学与技术国家重点实验室, 上海 200062
引用该论文

郑世凯, 杨康文, 敖建鹏, 叶蓬勃, 郝强, 黄坤, 季敏标, 曾和平. 光纤式相干拉曼散射成像光源研究进展[J]. 中国激光, 2019, 46(5): 0508008.

Shikai Zheng, Kangwen Yang, Jianpeng Ao, Pengbo Ye, Qiang Hao, Kun Huang, Minbiao Ji, Heping Zeng. Advances in Fiber Laser Sources for Coherent Raman Scattering Microscopy[J]. Chinese Journal of Lasers, 2019, 46(5): 0508008.

参考文献

[1] Zumbusch A, Holtom G R, Xie X S. Three-dimensional vibrational imaging by coherent anti-stokes Raman scattering[J]. Physical Review Letters, 1999, 82(20): 4142-4145.

[2] Freudiger C W, Min W, Saar B G, et al. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy[J]. Science, 2008, 322(5909): 1857-1861.

[3] Xu C, Wise F W. Recent advances in fibre lasers for nonlinear microscopy[J]. Nature Photonics, 2013, 7(11): 875-882.

[4] Shipp D W, Sinjab F, Notingher I. Raman spectroscopy: techniques and applications in the life sciences[J]. Advances in Optics and Photonics, 2017, 9(2): 315-428.

[5] Müller J, Ibach W, Weishaupt K. et al. Confocal Raman microscopy[J]. Microscopy and Microanalysis, 2003, 9(S02): 1084-1085.

[6] Zhang C, Cheng J X. Perspective:coherent Raman scattering microscopy, the future is bright[J]. APL Photonics, 2018, 3(9): 090901.

[7] Sharping J E. Microstructure fiber based optical parametric oscillators[J]. Journal of Lightwave Technology, 2008, 26(14): 2184-2191.

[8] 孔德飞, 贾东方, 冯德军, 等. 光纤中的孤子自频移效应[J]. 激光与光电子学进展, 2018, 55(10): 101902.

    Kong D F, Jia D F, Feng D J, et al. Soliton self-frequency shift in optical fibers[J]. Laser & Optoelectronics Progress, 2018, 55(10): 101902.

[9] 赵磊, 李超, 黎玥, 等. 基于光子晶体光纤的百瓦超连续谱的产生[J]. 中国激光, 2017, 44(2): 0201018.

    Zhao L, Li C, Li Y, et al. Hundred-watt-level supercontinuum spectrum generation based on photonic crystal fiber[J]. Chinese Journal of Lasers, 2017, 44(2): 0201018.

[10] He R Y, Xu Y K, Zhang L L, et al. Dual-phase stimulated Raman scattering microscopy for real-time two-color imaging[J]. Optica, 2017, 4(1): 44-47.

[11] Andresen E R, Birkedal V, Thøgersen J, et al. Tunable light source for coherent anti-Stokes Raman scattering microspectroscopy based on the soliton self-frequency shift[J]. Optics Letters, 2006, 31(9): 1328-1330.

[12] Al-Kadry A, Rochette M. Maximized soliton self-frequency shift in non-uniform microwires by the control of third-order dispersion perturbation[J]. Journal of Lightwave Technology, 2013, 31(9): 1462-1467.

[13] 王丽, 荆杰泰. 基于级联四波混频系统实现信噪比优化的理论研究[J]. 光学学报, 2017, 37(7): 0719001.

    Wang L, Jing J T. Theoretical research on optimization of signal-noise ratio based on cascaded four-wave mixing system[J]. Acta Optica Sinica, 2017, 37(7): 0719001.

[14] Duncan M D, Reintjes J, Manuccia T J. Scanning coherent anti-stokes Raman microscope[J]. Optics Letters, 1982, 7(8): 350-352.

[15] Cheng J X, Volkmer A, Xie X S. Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy[J]. Journal of the Optical Society of America B, 2002, 19(6): 1363-1375.

[16] Wurpel G W H, Schins J M, Müller M. Chemical specificity in three-dimensional imaging with multiplex coherent anti-Stokes Raman scattering microscopy[J]. Optics Letters, 2002, 27(13): 1093-1095.

[17] Dudovich N, Oron D, Silberberg Y. Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy[J]. Nature, 2002, 418(6897): 512-514.

[18] Nodop D, Jauregui C, Schimpf D, et al. Efficient high-power generation of visible and mid-infrared light by degenerate four-wave-mixing in a large-mode-area photonic-crystal fiber[J]. Optics Letters, 2009, 34(22): 3499-3501.

[19] Lavoute L, Knight J C, Dupriez P, et al. High power red and near-IR generation using four wave mixing in all integrated fibre laser systems[J]. Optics Express, 2010, 18(15): 16193-16205.

[20] Mitschke F M, Mollenauer L F. Discovery of the soliton self-frequency shift[J]. Optics Letters, 1986, 11(10): 659-661.

[21] Gordon J P. Theory of the soliton self-frequency shift[J]. Optics Letters, 1986, 11(10): 662-664.

[22] Baumgartl M, Gottschall T, Abreu-Afonso J, et al. Alignment-free, all-spliced fiber laser source for CARS microscopy based on four-wave-mixing[J]. Optics Express, 2012, 20(19): 21010-21018.

[23] Ozeki Y, Umemura W, Sumimura K, et al. Stimulated Raman hyperspectral imaging based on spectral filtering of broadband fiber laser pulses[J]. Optics Letters, 2012, 37(3): 431-433.

[24] Lamb E S, Lefrancois S, Ji M B, et al. Fiber optical parametric oscillator for coherent anti-Stokes Raman scattering microscopy[J]. Optics Letters, 2013, 38(20): 4154-4157.

[25] Gottschall T, Meyer T, Baumgartl M, et al. Fiber-based optical parametric oscillator for high resolution coherent anti-Stokes Raman scattering (CARS) microscopy[J]. Optics Express, 2014, 22(18): 21921-21928.

[26] Brinkmann M, Janfrüchte S, Hellwig T, et al. Electronically and rapidly tunable fiber-integrable optical parametric oscillator for nonlinear microscopy[J]. Optics Letters, 2016, 41(10): 2193-2196.

[27] Gottschall T, Meyer T, Jauregui C, et al. All-fiber optical parametric oscillator for bio-medical imaging applications[J]. Proceedings of SPIE, 2017, 10083: 100831E.

[28] Shou J W, Ozeki Y. Dual-polarization hyperspectral stimulated Raman scattering microscopy[J]. Applied Physics Letters, 2018, 113(3): 033701.

[29] Gottschall T, Meyer T, Baumgartl M, et al. Fiber-based light sources for biomedical applications of coherent anti-Stokes Raman scattering microscopy[J]. Laser & Photonics Reviews, 2015, 9(5): 435-451.

[30] Kano H, Hamaguchi H. Near-infrared coherent anti-Stokes Raman scattering microscopy using supercontinuum generated from a photonic crystal fiber[J]. Applied Physics B, 2005, 80(2): 243-246.

[31] Porquez J G, Cole R A, Tabarangao J T, et al. Brighter CARS hypermicroscopy via “spectral surfing” of a Stokes supercontinuum[J]. Optics Letters, 2017, 42(12): 2255-2258.

[32] Freudiger C W, Yang W L, Holtom G R, et al. Stimulated Raman scattering microscopy with a robust fibre laser source[J]. Nature Photonics, 2014, 8(2): 153-159.

[33] 刘双龙, 刘伟, 陈丹妮, 等. 相干反斯托克斯拉曼散射显微成像技术研究[J]. 物理学报, 2016, 65(6): 064204.

    Liu S L, Liu W, Chen D N, et al. Research on coherent anti-Stokes Raman scattering microscopy[J]. Acta Physica Sinica, 2016, 65(6): 064204.

[34] Wang K, Wang J Q, Qiu P. Peak power fluctuation due to timing jitter in synchronized time-lens source for coherent Raman scattering microscopy[J]. Optics Express, 2016, 24(9): 9645-9650.

[35] He R Y, Liu Z P, Xu Y K, et al. Stimulated Raman scattering microscopy and spectroscopy with a rapid scanning optical delay line[J]. Optics Letters, 2017, 42(4): 659-662.

[36] 尹君, 林子扬, 屈军乐, 等. 相干反斯托克斯拉曼散射显微成像技术[J]. 中国激光, 2009, 36(10): 2477-2484.

    Yin J, Lin Z Y, Qu J L, et al. Coherent anti-Stokes Raman scattering microscopic imaging technique[J]. Chinese Journal of Lasers, 2009, 36(10): 2477-2484.

[37] Zhao Y, Zhang S, Zhang Z B, et al. Molecular vibrational dynamics in ethanol studied by femtosecond CARS[J]. Optics Communications, 2015, 334(28): 319-322.

[38] Ji MB, ArbelM, Zhang LL, et al. Label-free imaging of amyloid plaques in Alzheimer's disease with stimulated Raman scattering microscopy[J]. Science Advances, 2018, 4(11): eaat7715.

[39] 江俊峰, 郭洪龙, 刘铁根, 等. 用于CARS激发源的全光纤窄线宽皮秒脉冲种子源的研究[J]. 中国激光, 2015, 42(2): 0205004.

    Jiang J F, Guo H L, Liu T G, et al. Research on all-fiber narrow bandwidth picosecond pulse seed source for CARS excitation source[J]. Chinese Journal of Lasers, 2015, 42(2): 0205004.

[40] Yuan J H, Zhou G Y, Xia C M, et al. Degenerate four-wave mixing-based light source for CARS microspectroscopy[J]. IEEE Photonics Technology Letters, 2016, 28(7): 763-766.

[41] ChenK, WuT, Wei HY, et al. Background-free coherent anti-stokes Raman spectroscopy by all-fiber-generated dual-soliton as stokes pulse[C]∥CLEO: Science and Innovations2016, 5-10 June, 2016, San Jose, California, USA. OSA,SF10:SF10. 3.

[42] Wang K, Wang Y X, Liang R F, et al. Contributed review: a new synchronized source solution for coherent Raman scattering microscopy[J]. Review of Scientific Instruments, 2016, 87(7): 071501.

[43] 赵君, 胡明列, 范锦涛, 等. 光纤飞秒激光抽运的非线性光学频率变换研究进展[J]. 激光与光电子学进展, 2018, 55(4): 040001.

    Zhao J, Hu M L, Fan J T, et al. Research progress of nonlinear frequency conversion technology based on fiber femtosecond lasers[J]. Laser & Optoelectronics Progress, 2018, 55(4): 040001.

[44] Fu Y, Wang H F, Shi R Y, et al. Characterization of photodamage in coherent anti-Stokes Raman scattering microscopy[J]. Optics Express, 2006, 14(9): 3942-3951.

[45] Yang K W, Jiang J S, Guo Z R, et al. Tunable femtosecond laser from 965 to 1025 nm in fiber optical parametric oscillator[J]. IEEE Photonics Technology Letters, 2018, 30(7): 607-610.

[46] Zlobina E A, Kablukov S I, Babin S A. Phase matching for parametric generation in polarization maintaining photonic crystal fiber pumped by tunable Yb-doped fiber laser[J]. Journal of the Optical Society of America B, 2012, 29(8): 1959-1967.

[47] Chemnitz M, Baumgartl M, Meyer T, et al. Widely tuneable fiber optical parametric amplifier for coherent anti-Stokes Raman scattering microscopy[J]. Optics Express, 2012, 20(24): 26583-26595.

[48] Yang K W, Wu Y X, Jiang J S, et al. Fiber optical parametric oscillator and amplifier for CARS spectroscopy[J]. IEEE Photonics Technology Letters, 2018, 30(10): 967-970.

[49] Yang K W, Ye P B, Zheng S K, et al. Polarization switch of four-wave mixing in a tunable fiber optical parametric oscillator[J]. Optics Express, 2018, 26(3): 2995-3003.

[50] Zhang L, Yang S G, Wang X J, et al. Photonic crystal fiber based wavelength-tunable optical parametric amplifier and picosecond pulse generation[J]. IEEE Photonics Journal, 2014, 6(5): 1501908.

[51] Yang K W, Zheng S K, Wu Y X. et al. Low-repetition-rate all-fiber integrated optical parametric oscillator for coherent anti-Stokes Raman spectroscopy[J]. Optics Express., 2018, 26(13): 17519-17528.

郑世凯, 杨康文, 敖建鹏, 叶蓬勃, 郝强, 黄坤, 季敏标, 曾和平. 光纤式相干拉曼散射成像光源研究进展[J]. 中国激光, 2019, 46(5): 0508008. Shikai Zheng, Kangwen Yang, Jianpeng Ao, Pengbo Ye, Qiang Hao, Kun Huang, Minbiao Ji, Heping Zeng. Advances in Fiber Laser Sources for Coherent Raman Scattering Microscopy[J]. Chinese Journal of Lasers, 2019, 46(5): 0508008.

本文已被 9 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!