红外与毫米波学报, 2019, 38 (4): 04542, 网络出版: 2019-10-14   

紧凑型消像散长狭缝光谱仪光学系统

Compact anastigmatic long-slit spectrometer
朱嘉诚 1,2,*沈为民 1,2
作者单位
1 苏州大学 光电科学与工程学院 教育部现代光学技术重点实验室,江苏 苏州 215006
2 苏州大学 光电科学与工程学院 江苏省先进光学制造技术重点实验室,江苏 苏州 215006
摘要
为提高高光谱遥感仪器的幅宽和减小其体积,重点研究适用于宽幅高光谱遥感应用的长狭缝、紧凑型Wynne-Offner光谱仪.通过追迹主光线,导出像散表达式,分析Offner装架和Wynne-Offner光装架的像散特性.指出Wynne-Offner装架的消像散圆域大于Offner装架的消像散圆环域,前者更适用于长狭缝.给出两个光谱仪实例,狭缝长度均为70 mm,分别工作于0.5~1.0 μm和1.0~2.5 μm波长范围,成像质量接近于衍射极限,光谱畸变可忽略,具备狭缝长、结构紧凑、像质优的特点,适用于宽幅高光谱遥感应用.
Abstract
In order to increase the swath width and reduce the volume of hyperspectral remote sensing instruments, the compact, long-slit Wynne-Offner spectrometers suitable for wide swath width were detailedly studied. By tracing the chief ray, expressions of the astigmatism were deduced, and the astigmatism of the Offner configuration and the Wynne-Offner configuration were analyzed. It was pointed out that the anastigmatic circle domain of the Wynne-Offner configuration is larger than that of the Offner configuration, and the former was more suitable for long slit. Two examples of spectrometers were given. Length of their slits are both 70 mm, and they worked in the wavelength range of 0.5~10 μm and 1.0~2.5 μm respectively. The imaging quality was close to the diffraction limit, and the spectral distortion was negligible. Such Wynne-Offner spectrometers have the advantages of long slit, compact structure and high imaging quality, and it is really suitable for the remote sensing applications with wide swath width.
参考文献

[1] Offner A. Unit power imaging catoptric anastigmat: US, 3748015[P]. 1973.

[2] Wynne C G. Optical imaging systems: US, 4796984[P]. 1989.

[3] Chrisp M P. Convex diffraction grating imaging spectrometer: US, 5880834[P]. 1999.

[4] Mertz L. Concentric spectrographs [J]. Applied Optics, 1977, 16(12):3122.

[5] Kwo D, Lawrence G, Chrisp M. Design of a grating spectrometer from a 1:1 Offner mirror system [J]. Proceedings of SPIE, 1987, 818:275-281.

[6] Prieto-Blanco X, Montero-Orille C, Couce B, et al. Analytical design of an Offner imaging spectrometer [J]. Optics Express, 2006, 14(20):9156-68.

[7] Lobb D R. Theory of concentric designs for grating spectrometers [J]. Applied Optics, 1994, 33(13):2648.

[8] Dan R L. Design of a spectrometer system for measurements on earth atmosphere from geostationary orbit [J]. Proceedings of SPIE, 2004,5249:191-202.

[9] Prieto-Blanco X, Fuente R D L. Compact Offner-Wynne imaging spectrometers [J]. Optics Communications, 2014, 328(10):143-150.

[10] Reimers J, Schiesser E M, Thompson K P, et al. Comparison of freeform imaging spectrometer design forms using spectral full-field displays [C]// OSA Technical Digest: Freeform Optics. 2015:FM3B.3.

[11] Wei L, Feng L, Zhou J, et al. Optical design of Offner-Chrisp imaging spectrometer with freeform surfaces [C]// Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 2016:100211P.

[12] Risse S, Krutz D. Design of an imaging spectrometer for earth observation using freeform mirrors [C]// ISCO: International Conference on Space Optics, 2016:161.

[13] Marchi A Z, Borguet B, Marchi A Z, et al. Freeform grating spectrometers for hyperspectral space applications: status of ESA programs [C]// OSA Technical Digest: Freeform Optics. 2017:JTh2B.5.

[14] Reimers J, Bauer A, Thompson K P, et al. Freeform spectrometer enabling increased compactness[J]. Light Science & Applications, 2017, 6(7):e17026.

[15] Cheng D, Yang T, Wang Y. Freeform imaging spectrometer design using a point-by-point design method [J]. Applied Optics, 2018, 57(16):4718.

[16] Whyte C, Leigh R J, Lobb D, et al. Assessment of the performance of a compact concentric spectrometer system for Atmospheric Differential Optical Absorption Spectroscopy[J]. Atmospheric Measurement Techniques, 2009, 2(2):789-800.

[17] Zhang L F, Xu C R, Gao jun, et al. Recent advances in Chinese Spaceborne Hyperspectral Missions [C]// IEEE-IGARSS ISIS TC Presentations-International Spaceborne Imaging Spectroscopy Missions: Updates and News II, 2015.

[18] Coppo P, Taiti A, Pettinato L, et al. Fluorescence imaging spectrometer (FLORIS) for ESA FLEX mission [J]. Remote Sensing, 2017, 9(7):649.

[19] Parks R E, Kuhn W P. Optical alignment using the Point Source Microscope [C]// International Society for Optics and Photonics, 2005:58770B-58770B-15.

[20] Reimers J, Thompson K, Whiteaker K L, et al. Spectral full-field displays for spectrometers[C]// International Society for Optics and Photonics, 2014:92930O-92930O-5.

朱嘉诚, 沈为民. 紧凑型消像散长狭缝光谱仪光学系统[J]. 红外与毫米波学报, 2019, 38(4): 04542. ZHU Jia-Cheng, SHEN Wei-Min. Compact anastigmatic long-slit spectrometer[J]. Journal of Infrared and Millimeter Waves, 2019, 38(4): 04542.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!