High Power Laser Science and Engineering, 2020, 8 (2): 02000e13, Published Online: Apr. 21, 2020  

Thermal lens analysis in a diode-pumped 10 Hz 100 mJ Yb:YAG amplifier Download: 637次

Author Affiliations
1 GoLP/Instituto de Plasmas e Fus?o Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais,1049-001Lisbon, Portugal
2 GoLP/Instituto de Plasmas e Fus?o Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais,1049-001Lisbon, Portugal
Figures & Tables

Fig. 1. Measured pump profile at the crystal medium plane ($z=l/2$) for a pump power of 4 kW, 1 ms.

下载图片 查看原文

Fig. 2. Temporal evolution of the input face axial temperature ($r=0$; $z=0$) of a repetitively pumped Yb:YAG crystal. The 1 Hz regime shows a negligible temperature buildup, while for 5 Hz and 10 Hz regimes there is a clear overall temperature offset.

下载图片 查看原文

Fig. 3. Temporal evolution of the $z=0$ radial temperature distribution for a 1 Hz repetition rate pump. The time window ranges from 0 to 10 s, when the maximum temperature is reached. Color scale in kelvin. A maximum pump power was assumed (4 kW, 1 ms) delivered in a $w_{p}=1.35~\text{mm}$ waist radius, resulting in a temperature difference of 13.6 K between the edge and the center of the gain medium.

下载图片 查看原文

Fig. 4. Temporal evolution of the $z=0$ radial temperature distribution at 10 Hz, 1 ms pump pulse. Color scale in kelvin. (a) Time window corresponding to initial evolution (0–1 s), showing a net increase in the peak temperature. (b) Steady state at nearly constant temperature, with periodic fluctuations. Maximum temperature difference between the center and the coolant is 39.4 K.

下载图片 查看原文

Fig. 5. Optical path difference versus radial position inside gain medium for 1 Hz and 10 Hz. Quadratic behavior valid for the pumping region ($r). Significant differences shown for the outer region ($w_{p}).

下载图片 查看原文

Fig. 6. Experimental setup for thermal lens measurement.

下载图片 查看原文

Fig. 7. Performance of the 8-pass amplifier. A maximum output energy of 100 mJ is achieved on a daily basis. The inset shows corresponding spectra for the main stages of the laser setup.

下载图片 查看原文

Fig. 8. Wavefront measurements for the probe beam in units of $\unicode[STIX]{x1D706}$. (a) Input beam. (b) Residual wavefront after removal of the reference wavefront. (c) Example of a measured wavefront.

下载图片 查看原文

Fig. 9. Experimental thermal lens focal length versus pump power for 1 ms, 1 Hz (in red). Each data point represents the mean value of 10 consecutive measurements. The results of the numerical model are shown in black.

下载图片 查看原文

Table1. Thermo-optical properties of Yb:YAG.

Material () () ()Doping (at.%) (nm) (nm) ()
Yb:YAG 8.4 590 4.560 39401030 30.14

查看原文

Victor Hariton, Celso Paiva Jo?o, Hugo Pires, Mario Galletti, Gon?alo Figueira. Thermal lens analysis in a diode-pumped 10 Hz 100 mJ Yb:YAG amplifier[J]. High Power Laser Science and Engineering, 2020, 8(2): 02000e13.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!