光学学报, 2012, 32 (2): 0206004, 网络出版: 2012-01-11  

基于多波长激光器的带通微波光子滤波器设计

Design of Tunable Bandpass Photonic Microwave Filter Based on Multi-Wavelength Fiber Laser
作者单位
天津理工大学薄膜电子与通信器件实验室, 天津 300384
摘要
提出了一种基于多波长光纤激光器的可调谐的带通微波光子滤波器。它以可调谐多波长光纤激光器作为光源,将相位调制器和色散器件相结合,通过在普通单模光纤中相位调制到强度调制的转换效应消除了低频谐振峰实现了带通微波光子滤波器。利用双折射光纤环镜输出谱中的一个窗口对多波长激光信号频谱进行加窗处理,使微波光子滤波器的边瓣抑制比提高了约11 dB。通过调节多波长光纤激光器中的偏振控制器可以使输出多波长激光信号的相邻波长间隔得到调节,从而结合普通单模光纤的色散延时作用可以使微波光子滤波器的通带中心频率在7.66 GHz范围内调谐。
Abstract
A tunable bandpass microwave photonic filter (MPF) based on multi-wavelength fiber laser (MWFL) which is used as the light source is proposed and demonstrated. The combination of the phase modulator and the dispersion devices convert the phase modulation to intensity modulation in the ordinary single-mode fiber, and it eliminates the low-frequency resonant peak thus a new bandpass filter is realized. By using one of the birefringent fiber loop mirror output windows for the apodization of the multi-wavelength signal, the main lobe to sidelobe suppression ratio of the MPF is raised about 11 dB. The wavelength interval of the MWFL can be adjusted by tuning the polarization controllers (PC) in it. The time delay between adjacent wavelengths is changed when the laser signal passes through the ordinary single-mode fiber because of the dispersion in it thus the central frequency of the band pass MPF is tuned within 7.66 GHz.
参考文献

[1] K. Jackson, S. Newton, B. Moslehi et al.. Optical fiber delay-line signal processing[J]. IEEE Microwave Theory Technology, 1985, 33(3): 193~209

[2] B. Moslehi. Fiber-optic filters employing optical amplifiers to provide design flexibility[J]. Electron. Lett., 1992, 28(3): 226~228

[3] Ehsan Hamidi, Daniel E. Leaird, AndrewM. Weiner. Tunable programmable microwave photonic filters based on an optical frequency comb[J]. IEEE Trans. Microwave Theory and Techniques, 2010, 58(11): 3269~3278

[4] Haiyan Ou, Chenhui Ye, Kun Zhu et al.. Millimeter-wave harmonic signal generation and distribution using a tunable single-resonance microwave photonic filter[J]. J. Lightwave Technol., 2010, 28(16): 2337~2342

[5] D. Pastor, J. Capmany, B. Ortega et al.. Reconfigurable RF photonic filter with negative coefficients and flat-top resonances using phase inversion is a newly designed 2×1 integrated Mach-Zehnder modulator [J]. IEEE Photon. Technol. Lett., 2004, 16(9): 2126~2128

[6] E. H. W. Chan, R. A. Minasian. Multiple-tap, tunable microwave photonic interference mitigation filter [J]. J. Lightwave Technol., 2011, 29(8): 1069~1076

[7] T. X. H. Huang, X. Yi, R. A. Minasian. Microwave photonic filters with programmable bipolar coefficients based on π-phase inversion of DSB sidebands [J]. Electron. Lett., 2010, 46(24): 1609~1610

[8] B. Vidal, J. L. Corral, J. Marti. Multi-tap all-optical microwave filter with negative coefficients based on multiple optical carriers and dispersive media[C]. International Topical Meeting on Microwave Photonics, Centro de Tecnología Nanofotónica, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain), 2005, 12-14: 201~204

[9] Yan Gao, Liang Dou, Anshi Xu et al.. Novel tunable microwave photonic notch filter using a 3×3 coupler based Sagnac loop[C]. Nano-Optoelectronics Workshop, 2007, 152~153

[10] Yi X. Huang, T. X. H, R. A. Minasian. Microwave photonic filter with tunability, reconfigurability and bipolar taps[J]. Electron. Lett., 2009, 45(16): 840~841

[11] Hongyan Fu, Wei Zhang, Chengbo Mou et al.. High-frequency fiber Bragg grating sensing interrogation system using Sagnac-loop-based microwave photonic filtering[J]. IEEE Photon. Technol. Lett., 2009, 21(8): 519~521

[12] L. R. Chen, V. Page. Tunable photonic microwave filter using semiconductor fibre laser [J]. Electron. Lett., 2005, 41(21): 1183~1184

[13] Xinhuan Feng, C. Lu , H. Y. Tam et al.. Reconfigurable microwave photonic filter using multiwavelength erbium-doped fiber laser [J]. IEEE Photon. Technol. Lett., 2007, 19(17): 1334~1336

[14] Byung-Min Jung, Min-Ho Park, Hyoung-Jun Kim et al.. Microwave photonic filter based on fiber-optic delay line[C]. International Conference on Microwave and Millimeter Wave Technology, Gwangju, South Korea,2010. 518~520

[15] Fei Zeng, Member, Jianping Yao. Investigation of phase-modulator-based all-optical bandpass microwave filter[J]. J. Lightwave Technol., 2005, 23(4): 1721~1728

杨秀峰, 彭磊, 童峥嵘, 曹晔, 杨寅飞. 基于多波长激光器的带通微波光子滤波器设计[J]. 光学学报, 2012, 32(2): 0206004. Yang Xiufeng, Peng Lei, Tong Zhengrong, Cao Ye, Yang Yinfei. Design of Tunable Bandpass Photonic Microwave Filter Based on Multi-Wavelength Fiber Laser[J]. Acta Optica Sinica, 2012, 32(2): 0206004.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!