发光学报, 2020, 41 (7): 775, 网络出版: 2020-08-12   

溶液法制备CsPbBr3钙钛矿薄膜微观结构控制与发光特性

Microstructure and Luminescence Characteristics of CsPbBr3 Perovskite Films by Solution Process
作者单位
福州大学 物理与信息工程学院, 平板显示技术国家地方联合工程实验室, 福建 福州 350108
摘要
近年来, 金属卤化物钙钛矿以其光吸收系数高、色纯度高、色域广、发光波长连续可调、光致发光量子产率高、载流子扩散长度大和成分稳定不易分解等优点, 成为光电子应用领域极具潜力的新材料, 其在太阳能电池、发光二极管、忆阻器、激光器、光电探测器和防伪标签等方面均有出色的表现, 并且可通过简单的全溶液法制备, 为印刷工艺的结合、大尺寸生产和产业化提供了可能。实验采用一步溶液法制备了原位生长的溴化铅铯钙钛矿薄膜, 其在(100)晶面有择优取向, 且相应的晶面间距小于PDF标准卡片值。通过增大前驱液的浓度, 使样品的形貌结构产生差异, 薄膜的连续性和致密性随之提高, 晶粒得到细化, 在375 nm激发光下的光致发光(PL)强度得到约5倍的提升, 且PL峰位蓝移6 nm, 同时该过程导致的晶格畸变使其PL光谱半高宽(FWHM)增大超过2 nm。
Abstract
In recent years, metal halide perovskites have become new promising materials in the field of optoelectronic applications due to the advantages of high optical absorption coefficient, high color purity, wide color gamut, continuously adjustable luminescence wavelength, high photoluminescence quantum yield, large carrier diffusion length, stable ingredients and not easy to decompose, and have excellent performance in solar cells, light-emitting diodes, memristors, lasers, photodetectors and anti-counterfeiting labels. Furthermore, perovskites can be made by simple methods like solution synthesis, which provides the possibility of combining it with the printing process, large-scale production and industrialization. In this experiment, solution-processed CsPbBr3 perovskite films grown in situ have a preferred orientation on the (100) crystal plane, and its interplanar spacing is smaller than the value from PDF standard card. As the concentration of precursor increases, the morphological structure of samples varied, continuity and compactness of films were improved, crystal grains were refined, the photoluminescence(PL) intensity excited by light at 375 nm was approximately 5 times original, the PL peak position blue shifted by 6 nm, and the lattice distortion caused by this process increased the full width at half maximum(FWHM) of the PL spectrum by more than 2 nm.
参考文献

[1] KAY H F,BAILEY P C. Structure and properties of CaTiO3 [J]. Acta Crystallogr., 1957,10(3):219-226.

[2] IM J H,LEE C R,LEE J W,et al.. 6.5% efficient perovskite quantum-dot-sensitized solar cell [J]. Nanoscale, 2011,3(10):4088-4093.

[3] PROTESESCU L,YAKUNIN S,BODNARCHUK M I,et al.. Nanocrystals of cesium lead halide perovskites(CsPbX3,X=Cl,Br,and I):novel optoelectronic materials showing bright emission with wide color gamut [J]. Nano Lett., 2015,15(6):3692-3696.

[4] LIU Y H,XU Q,CHANG S,et al.. Brightly luminescent and color-tunable green-violet-emitting halide perovskite CH3NH3PbBr3 colloidal quantum dots:an alternative to lighting and display technology [J]. Phys. Chem. Chem. Phys., 2018,20(30):19950-19957.

[5] LU P,LU M,WANG H,et al.. Metal halide perovskite nanocrystals and their applications in optoelectronic devices [J]. InfoMat, 2019,1(4):1-29.

[6] CHO H,JEONG S H,PARK M H,et al.. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes [J]. Science, 2015,350(6265):1222-1225.

[7] SWARNKAR A,CHULLIYIL R,RAVI V K,et al.. Colloidal CsPbBr3 perovskitenanocrystals:luminescence beyond traditional quantum dots [J]. Angew. Chem. Int. Ed., 2015,54(51):15424-15428.

[8] KIM Y C,BAEK S D,MYOUNG J M. Enhanced brightness of methylammonium lead tribromideperovskite microcrystal-based green light-emitting diodes by adding hydrophilic polyvinylpyrrolidone with oleic acid-modified ZnO quantum dot electron transporting layer [J]. J. Alloys Compd., 2019,786:11-17.

[9] LI Y X,ZHANG X Y,HUANG H,et al.. Advances in metal halide perovskitenanocrystals:synthetic strategies,growth mechanisms,and optoelectronic applications [J]. Mater. Today, 2020,32:204-221.

[10] MA F M,ZHU Y B,XU Z W,et al.. Optoelectronic perovskite synapses for neuromorphic computing [J]. Adv. Funct. Mater., 2020,30(11):1908901.

[11] WANG N,LIU W B,ZHANG Q C. Perovskite-based nanocrystals:synthesis and applications beyond solar cells [J]. Small Methods, 2018,2(6):1700380.

[12] LIU Y,LI F S,QIU L C,et al.. Fluorescent microarrays of in situ crystallized perovskite nanocomposites fabricated for patterned applications by using inkjet printing [J]. ACS Nano, 2019,13(2):2042-2049.

[13] YIN W J,YANG J H,KANG J,et al.. Halide perovskite materials for solar cells:a theoretical review [J]. J. Mater. Chem., 2015,3(17):8926-8942.

[14] KULBAK M,GUPTA S,KEDEM N,et al.. Cesium enhances long-term stability of lead bromide perovskite-based solar cells [J]. J. Phys. Chem. Lett., 2016,7(1):167-172.

[15] DUAN J L,XU H Z,SHA W E I,et al.. Inorganic perovskite solar cells:an emerging member of the photovoltaic community [J]. J. Mater. Chem., 2019,7(37):21036-21068.

[16] LIU M Z,JOHNSTON M B,SNAITH H J,et al.. Efficient planar heterojunctionperovskite solar cells by vapour deposition [J]. Nature, 2013,501(7467):395-398.

[17] MATSUSHIMA T,BENCHEIKH F,KOMINO T,et al.. High performance from extraordinarily thick organic light-emitting diodes [J]. Nature, 2019,572(7770):502-506.

[18] KOJIMA A,TESHIMA K,SHIRAI Y,et al.. Organometalhalide perovskites as visible-light sensitizers for photovoltaic cells [J]. J. Am. Chem. Soc., 2009,131(17):6050-6051.

[19] YOU J B,HONG Z R,YANG Y,et al.. Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility [J]. ACS Nano, 2014,8(2):1674-1680.

[20] DOCAMPO P,HANUSCH F C,STRANKS S D,et al.. Solution deposition-conversion for planar heterojunction mixed halide perovskite solar cells [J]. Adv. Energy Mater., 2014,4(14):1400355.

[21] CHO H,WOLF C,KIM J S,et al.. High-efficiency solution-processed inorganic metal halide perovskite light-emitting diodes [J]. Adv. Mater., 2017,29(31):1700579.

[22] LING Y C,TIAN Y,WANG X,et al.. Enhanced optical and electrical properties of polymer-assisted all-inorganic perovskites for light-emitting diodes [J]. Adv. Mater., 2016,28(40):8983-8989.

[23] WANG Z B,LUO Z,ZHAO C Y,et al.. Efficient and stable pure green all-inorganic perovskite CsPbBr3 light-emitting diodes with a solution-processed NiOx interlayer [J]. J. Phys. Chem. C, 2017,121(50):28132-28138.

[24] 马雪,庄仕伟,韩丽锦,等. 合成及薄膜制备条件对CsPbBr3全无机钙钛矿量子点特性的影响 [J]. 发光学报, 2019,40(8):949-955.

    MA X,ZHUANG S W,HAN L J,et al.. Effects of synthesis and film preparation conditions on properties of CsPbBr3 inorganic perovskite quantum dots [J]. Chin. J. Lumin., 2019,40(8):949-955. (in Chinese)

[25] JUNG M,JI S G,KIM G,et al.. Perovskite precursor solution chemistry:from fundamentals to photovoltaic applications [J]. Chem. Soc. Rev., 2019,48(7):2011-2038.

[26] 章楼文,沈少立,李露颖,等. 铯铅卤化物钙钛矿型平面异质结LED的应用与发展 [J]. 无机材料学报, 2019,34(1):37-48.

    ZHANG L W,SHEN S L,LI L Y,et al.. Application and development of cesium lead halide perovskite based planar heterojunction LEDs [J]. J. Inorg. Mater., 2019,34(1):37-48. (in Chinese)

郑悦婷, 郑鑫, 胡海龙, 郭太良, 林金堂, 李福山. 溶液法制备CsPbBr3钙钛矿薄膜微观结构控制与发光特性[J]. 发光学报, 2020, 41(7): 775. ZHENG Yue-ting, ZHENG Xin, HU Hai-long, GUO Tai-liang, LIN Jin-tang, LI Fu-sha. Microstructure and Luminescence Characteristics of CsPbBr3 Perovskite Films by Solution Process[J]. Chinese Journal of Luminescence, 2020, 41(7): 775.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!