Frontiers of Optoelectronics, 2011, 4 (2): 150, 网络出版: 2012-09-21  

Room temperature synthesis of flower-like CuS nanostructures under assistance of ionic liquid

Room temperature synthesis of flower-like CuS nanostructures under assistance of ionic liquid
作者单位
School of Materials Science and Engineering, Education Ministry Key Laboratory on Luminescence and Real-Time Analysis, Southwest University, Chonqqing 400715, China
摘要
Abstract
Flower-like CuS nanostructures have been synthesized via a liquid precipitation route by the reaction between CuCl2$2H2O and thioacetamide (CH3CSNH2, TAA) in the ionic liquid 1-butyl-3-methyl imidazole six hexafluorophosphoric acid salts ([BMIM][PF6]) aqueous solution at room temperature. The products were characterized by X-ray powder diffraction (XRD), field emission scanning electronic microscopy (FESEM), Brunauer-Emmett-Teller (BET), Ultraviolet-Visible Spectrophotometer (UV-Vis) and Photoluminescence (PL) techniques. The as-prepared CuS nanostructures have a mean diameter of about 1 μm. A plausible mechanism was proposed to explain the formation of CuS nanostructures. The effects of experimental parameters on the formation of the products were also explored. With BET theory, it is found that the as-prepared CuS nanostructures have a specific area of 39m2/g. The Barrett-Joyner-Halenda (BJH) pore size distribution of the as-prepared CuS nanostructures presents smaller pores centers about 60 nm. The UV-Vis and PL curves indicate that the asprepared CuS nanostructures are promising candidates for the development of photoelectric devices.
参考文献

[1] Wang K J, Li G D, Wang Q, Chen J S. Formation of singlecrystalline CuS nanoplates vertically standing on flat substrate. Crystal Growth & Design, 2007, 7(11): 2265-2267

[2] Mane R S, Lokhande C D. Chemical deposition method for metal chalcogenide thin films. Materials Chemistry and Physics, 2000, 1(65): 1-31

[3] Roy P, Srivastava S K. Low-temperature synthesis of CuS nanorods by simple wet chemical method. Materials Letters, 2007, 61(8-9): 1693-1607

[4] Raevskaya A E, Stroyuk A U, Kuchmii S Y, Kryukov A I. Catalytic activity of CuS nanoparticles in hydrosulfide ions air oxidation. Journal of Molecular Catalysis A: Chemical, 2004, 212(1-2): 259-265

[5] Zhang Y C, Qian T, Hu X Y, Zhou W D. A facile low temperature solvothermal route to copper monosulfide submicrotubes. Materials Research Bulletin, 2005, 40(10): 1696-1704

[6] Barrelet C J, Wu Y, Bell D C, Lieber C M. Synthesis of CdS and ZnS nanowires using single-source molecular precursors. Journal of the American Chemical Society, 2003, 125(38): 11498-11499

[7] Xue P C, Lu R, Huang Y, Jin M, Tan C H, Bao C Y, Wang Z M, Zhao Y Y. Novel pearl-necklace porous CdS nanofiber templated by organogel. Langmuir, 2004, 20(15): 6470-6475

[8] Xue P C, Lu R, Li D M, Jin M, Tan C, Bao C, Wang Z, Zhao Y, Zhao Y Y. Novel CuS nanofibers using organogel as a template: controlled by binding sites. Langmuir, 2004, 20(25): 11234-11239

[9] Tan C H, Zhu Y L, Lu R, Xue P C, Bao C Y, Liu X L, Fei Z P, Zhao Y Y. Synthesis of copper sulfide nanotube in the hydrogel system. Materials Chemistry and Physics, 2005, 91(1): 44-47

[10] Wu C Y, Yu S H, Chen S F, Liu G N, Liu B H. Large scale synthesis of uniform CuS nanotubes in ethylene glycol by a sacrificial templating method under mile conditions. Journal of Materials Chemistry, 2006, 16(32): 3326-3331

[11] Ge L, Jing X Y,Wang J, Jamil S, Liu Q, Song D L, Xie Y, Yang P P, Zhang M L. Ionic liquid-assisted synthesis of CuS nestlike hollow spheres assembled by microflakes using an oil water interface route. Crystal Growth & Design, 2010, 10(4): 1688-1692

[12] Gao J N, Li Q S, Zhao H B, Li L S, Liu C L, Gong Q H, Qi L M. One-pot synthesis of uniform Cu2O and CuS hollow spheres and their optical limiting properties. Chemistry of Materials, 2008, 20(19): 6263-6369

[13] Shen X P, Zhao H, Shu H Q, Zhou H, Yuan A H. Self-assembly of CuS nanoflakes into flower-like microspheres: synthesis and characterization. Journal of Physics and Chemistry of Solids, 2009, 70(2): 422-427

[14] Zhu L Y, Xie Y, Zheng XW, Liu X, Zhou G E. Fabrication of novel urchin-like architecture and snowflake-like pattern CuS. Journal of Crystal Growth, 2004, 260(3-4): 494-499

[15] Zhang Y C, Hu X Y, Qiao T. Shape-controlled synthesis of CuS nanocrystallites via a facile hydrothermal route. Solid State Communications, 2004, 132(11): 779-782

[16] Roy P, Mondal K, Srivastzva S K. Synthesis of twinned CuS nanorods by a simple wet chemical method. Crystal Growth & Design, 2008, 5(8): 1530-1534

[17] Gao L, Wang E B, Lian S Y, Kang Z H, Lan Y, Wu D. Microemulsion-directed synthesis of different CuS nanocrystals. Solid State Communications, 2004, 130(5): 309-312

[18] van Rantwijk F, Sheldon R A. Biocatalysis in ionic liquids. Chemical Reviews, 2007, 107(6): 2757-2785

[19] Li Z H, Liu Z M, Zhang J L, Han B X, Du J M, Gao Y N, Jiang T. Synthesis of single-crystal gold nanosheets of large size in ionic liquids. Journal of Physical Chemistry B, 2005, 109(30): 14445-14448

[20] Qin Y, Song N J, Zhao N N, Li M X, Qi L M. Ionic liquid-assisted growth of single-crystalline dendritic gold nanostructures with a three-fold symmetry. Chemistry of Materials, 2008, 20(12): 3965-3972

[21] Wang Y, Yang H. Synthesis of CoPt nanorods in ionic liquids. Journal of the American Chemical Society, 2005, 127(15): 5316-5317

[22] Thirumurugan A. Use of ionic liquids in synthesis of nanocrystals, nanorods and nanowires of elemental chalcogens. Bulletin of Materials Science, 2007, 30(2): 179-182

[23] Movahedi M, Kowsari E, Mahjoub A R, Yavari I. A task specific basic ionic liquid for synthesis of flower-like ZnO by hydrothermal method. Materials Letters, 2008, 62(23): 3856-3858

[24] Jiang Y, Zhu Y J. Microwave-assisted synthesis of sulfide M2S3 (M= Bi, Sb) nanorods using an ionic liquid. Journal of Physical Chemistry B, 2005, 109(10): 4361-4364

[25] Zhu Y J,WangWW, Qi R J, Hu X L. Microwave-assisted synthesis of single-crystalline tellurium nanorods and nanowires in ionic liquids. Angewandte Chemie, 2004, 43(11): 1410-1414

[26] Jacob D S, Bitton L, Grinblat J, Felner I, Koltypin Y, Gedanken A. Are ionic liquids really a boon for the synthesis of inorganic materials A general method for the fabrication of nanosized metal fluorides. Chemistry of Materials, 2006, 18(13): 3162-3168

[27] He Y H, Li D Z, Chen Z X, Chen Y B, Fu X Z. New synthesis of single-crystalline InVO4 nanorods using an ionic liquid. Journal of the American Ceramic Society, 2007, 90(11): 3698-3703

[28] Tang G H. Synthesis of nanometer powders by liquid precipitation. Shanxi Chemical Industry, 2005, 25(3): 8-10 (in Chinese)

[29] Ding T Y, Wang M S, Guo S P, Guo G C, Huang J S. CuS nanoflowers prepared by a polyol route and their photocatalytic property. Materials Letters, 2008, 62(30): 4529-4531

[30] Zhang J, Zhang Z K. Hydrothermal synthesis and optical properties of CuS nanoplates. Materials Letters, 2008, 62(15): 2279-2281

[31] Thongtem T, Phuruangrant A, Thongtem S. Formation of CuS with flower like, hollow spherical, and tubular structures using the solvothermal-microwave process. Current Applied Physics, 2009, 9(1): 195-200

[32] Pereiro A B, Legido J L, Rodríguez A. Physical properties of ionic liquids based on 1-alkyl-3-methylimidazolium cation and hexafluorophosphate as anion and temperature dependence. Journal of Chemical Thermodynamics, 2007, 39(8): 1168-1175

[33] Zhang J, Zhang Z K. Shape-controlled synthesis of CuS nanocrystallites via a facial solution route. Journal of Functional Materials, 2007, 38: 2056-2058

[34] Xu H L, Wang W Z, Zhu W, Zhou L. Synthesis of octahedral CuS nanocages via a solid-liquid reaction. Nanotechnology, 2006, 17(15): 3649-3654

[35] Chen L F, Yu W, Li Y. Synthesis and characterization of tuber CuS with flower-like wall from a low temperature hydrothermal route. Powder Technology, 2009, 191(1-2): 52-54

[36] Li F, Kong T, Bi W T, Li D C, Li Z, Huang X T. Synthesis and optical of CuS nanoplate-based architectures by a solvothermal method. Applied Surface Science, 2009, 255(12): 6285-6289

Chuyan CHEN, Qing LI, Yiying WANG, Yuan LI, Xiaolin ZHONG. Room temperature synthesis of flower-like CuS nanostructures under assistance of ionic liquid[J]. Frontiers of Optoelectronics, 2011, 4(2): 150. Chuyan CHEN, Qing LI, Yiying WANG, Yuan LI, Xiaolin ZHONG. Room temperature synthesis of flower-like CuS nanostructures under assistance of ionic liquid[J]. Frontiers of Optoelectronics, 2011, 4(2): 150.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!