Photonics Research, 2015, 3 (5): 05000B10, Published Online: Jan. 6, 2016   

Silicon and hybrid silicon photonic devices for intra-datacenter applications: state of the art and perspectives [Invited] Download: 880次

Author Affiliations
1 Photonic Device Laboratory, Department of Electronic and Computer Engineering,The Hong Kong University of Science and Technology, Hong Kong, China
2 State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors,Chinese Academy of Sciences, P.O. Box 912, Beijing, China
Abstract
We review the state of the art and our perspectives on silicon and hybrid silicon photonic devices for optical interconnects in datacenters. After a brief discussion of the key requirements for intra-datacenter optical interconnects, we propose a wavelength-division-multiplexing (WDM)-based optical interconnect for intra-datacenter applications. Following our proposed interconnects configuration, the bulk of the review emphasizes recent developments concerning on-chip hybrid silicon microlasers and WDM transmitters, and silicon photonic switch fabrics for intra-datacenters. For hybrid silicon microlasers andWDM transmitters, we outline the remaining challenges and key issues toward realizing low power consumption, direct modulation, and integration of multiwavelength microlaser arrays. For silicon photonic switch fabrics, we review various topologies and configurations of high-port-count N-by-N switch fabrics using Mach–Zehnder interferometers and microring resonators as switch elements, and discuss their prospects toward practical implementations with active reconfiguration. For the microring-based switch fabrics, we review recent developments of active stabilization schemes at the subsystem level. Last, we outline several large challenges and problems for silicon and hybrid silicon photonics to meet for intra-datacenter applications and propose potential solutions.Optoelectronics;Diode laser arrays;Diode lasers;Laser resonators
References

[1] A. Ghiasi, “Large data centers interconnect bottlenecks,” Opt. Express 23, 2085–2090 (2015).

[2] D. Nikolova, S. Rumley, D. Calhoun, Q. Li, R. Hendry, P. Samadi, and K. Bergman, “Scaling silicon photonic switch fabrics for data center interconnection networks,” Opt. Express 23, 1159–1175 (2015).

[3] Finisar, http://www.finisar.com/products/active cables.

[4] Fujitsu, http://www.fujitsu.com/us/news/pr/fcai_20140304 01 .html.

[5] A. Alduino, L. Liao, R. Jones, M. Morse, B. Kim, W.-Z. Lo, J. Basak, B. Koch, H.-F. Liu, and H. Rong, “Demonstration of a high speed 4-channel integrated silicon photonics WDM link with hybrid silicon lasers,” in Integrated Photonics Research, Silicon and Nanophotonics (Optical Society of America, 2010), paper PDIWI5.

[6] G. A. Fish and D. K. Sparacin, “Enabling flexible datacenter interconnect networks with WDM silicon photonics,” in 2014 IEEE Proceedings of the Custom Integrated Circuits Conference (CICC), San Jose, CA (IEEE, 2014).

[7] R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).

[8] G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction (Wiley, 2004).

[9] Y. A. Vlasov, “Silicon CMOS-integrated nano-photonics for computer and data communications beyond 100G,” IEEE Commun. Mag. 50(2), s67–s72 (2012).

[10] Y. Takahashi, T. Asano, D. Yamashita, and S. Noda, “Ultracompact 32-channel drop filter with 100 GHz spacing,” Opt. Express 22, 4692–4698 (2014).

[11] D. Tan, A. Grieco, and Y. Fainman, “Towards 100 channel dense wavelength division multiplexing with 100 GHz spacing on silicon,” Opt. Express 22, 10408–10415 (2014).

[12] G. T. Reed, D. J. Thomson, F. Y. Gardes, Y. Hu, J.-M. Fedeli, and G. Z. Mashanovich, “High-speed carrier-depletion silicon Mach- Zehnder optical modulators with lateral PN junctions,” Front. Phys. 2, 77 (2014).

[13] D. Marris-Morini, L. Virot, C. Baudot, J.-M. Fédéli, G. Rasigade, D. Perez-Galacho, J.-M. Hartmann, S. Olivier, P. Brindel, and P. Crozat, “A 40 Gbit/s optical link on a 300-mm silicon platform,” Opt. Express 22, 6674–6679 (2014).

[14] A. W. Poon, X. Luo, F. Xu, and H. Chen, “Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection,” Proc. IEEE 97, 1216–1238 (2009).

[15] L. Lu, L. Zhou, Z. Li, X. Li, and J. Chen, “Broadband 4 × 4 nonblocking silicon electro-optic switches based on Mach-Zehnder interferometers,” IEEE Photon. J. 7, 7800108 (2015).

[16] L. Chen and Y.-K. Chen, “Compact, low-loss and low-power 8 × 8 broadband silicon optical switch,” Opt. Express 20, 18977–18985 (2012).

[17] L. Yang, Y. Xia, F. Zhang, Q. Chen, J. Ding, P. Zhou, and L. Zhang, “Reconfigurable non-blocking 4-port silicon thermo-optic optical router based on Mach-Zehnder optical switches,” Opt. Lett. 40, 1402–1405 (2015).

[18] B. G. Lee, A. V. Rylyakov, W. M. Green, S. Assefa, C. W. Baks, R. Rimolo-Donadio, D. M. Kuchta, M. H. Khater, T. Barwicz, and C. Reinholm, “Monolithic silicon integration of scaled photonic switch fabrics, CMOS logic, and device driver circuits,” J. Lightwave Technol. 32, 743–751 (2014).

[19] N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4 × 4 hitless silicon router for optical networks-on-chip (NoC),” Opt. Express 16, 15915–15922 (2008).

[20] L. Yang, H. Jia, Y. Zhao, and Q. Chen, “Reconfigurable nonblocking four-port optical router based on microring resonators,” Opt. Lett. 40, 1129–1132 (2015).

[21] A. Biberman, B. G. Lee, N. Sherwood-Droz, M. Lipson, and K. Bergman, “Broadband operation of nanophotonic router for silicon photonic networks-on-chip,” IEEE Photon. Technol. Lett. 22, 926–928 (2010).

[22] P. DasMahapatra, A. Rohit, R. Stabile, and K. A. Williams, “Broadband 4 × 4 switch matrix using fifth-order resonators,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper OW3H.2.

[23] L. Vivien, A. Polzer, D. Marris-Morini, J. Osmond, J. M. Hartmann, P. Crozat, E. Cassan, C. Kopp, H. Zimmermann, and J. M. Fédéli, “Zero-bias 40 Gbit/s germanium waveguide photodetector on silicon,” Opt. Express 20, 1096–1101 (2012).

[24] N.-N. Feng, D. Feng, S. Liao, X. Wang, P. Dong, H. Liang, C.-C. Kung, W. Qian, J. Fong, and R. Shafiiha, “30 GHz Ge electroabsorption modulator integrated with 3 μm silicon-on-insulator waveguide,” Opt. Express 19, 7062–7067 (2011).

[25] F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).

[26] R. E. Camacho-Aguilera, Y. Cai, N. Patel, J. T. Bessette, M. Romagnoli, L. C. Kimerling, and J. Michel, “An electrically pumped germaniumlaser,” Opt. Express 20, 11316–11320 (2012).

[27] S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9, 88–92 (2015).

[28] K. Yamada, T. Tsuchizawa, H. Nishi, R. Kou, T. Hiraki, K. Takeda, H. Fukuda, Y. Ishikawa, K. Wada, and T. Yamamoto, “High-performance silicon photonics technology for telecommunications applications,” Sci. Technol. Adv. Mater. 15, 024603 (2014).

[29] D. Feng, W. Qian, H. Liang, B. Luff, and M. Asghari, “High-speed receiver technology on the SOI platform,” IEEE J. Sel. Top. Quantum Electron. 19, 3800108 (2013).

[30] P. Dong, Y.-K. Chen, G.-H. Duan, and D. T. Neilson, “Silicon photonic devices and integrated circuits,” Nanophotonics 3, 215–228 (2014).

[31] A. Alduino, “Demonstration of a high speed 4-channel integrated silicon photonics WDM link with hybrid silicon lasers,” in Hot Chips: A Symposium on High Performance Chips, Stanford, CA (2010).

[32] “Cisco Visual Networking Index: Forecast and Methodology, 2013–2018,” http://www.cisco.com/c/en/us/solutions/collateral/ service provider/ip ngn ip next generation network/white_ paper_c11 481360.html.

[33] N. Ophir, C. Mineo, D. Mountain, and K. Bergman, “Silicon photonic microring links for high-bandwidth-density, low-power chip I/O,” IEEE Micro 33, 54–67 (2013).

[34] “IEEE standard for information technology-telecommunications and information exchange between systems-local and metropolitan area networks-specific requirements part 3: carrier sense multiple access with collision detection (CSMA/CD) access method and physical layer specifications amendment 4: media access control parameters, physical layers and management parameters for 40 Gb/s and 100 Gb/s operation,” IEEE Standard 802.3ba-2010 (amendment to IEEE Standard 802.3-2008).

[35] “100 G CWDM4 MSA Technical Specifications” (2014), http:// www.cwdm4 msa.org/files/CWDM4_MSA_Technical_Spec_1p0 .pdf.

[36] G. Li, A. V. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, and J. E. Cunningham, “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Top. Quantum Electron. 19, 95–113 (2013).

[37] L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408, 440–444 (2000).

[38] S. G. Cloutier, P. A. Kossyrev, and J. Xu, “Optical gain and stimulated emission in periodic nanopatterned crystalline silicon,” Nat. Mater. 4, 887–891 (2005).

[39] A. W. Fang, M. N. Sysak, B. R. Koch, R. Jones, E. Lively, Y. H. Kuo, D. Liang, O. Raday, and J. E. Bowers, “Single-wavelength silicon evanescent lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 535–544 (2009).

[40] C. Zhang, S. Srinivasan, Y. B. Tang, M. J. R. Heck, M. L. Davenport, and J. E. Bowers, “Low threshold and high speed short cavity distributed feedback hybrid silicon lasers,” Opt. Express 22, 10202–10209 (2014).

[41] S. Matsuo, T. Fujii, K. Hasebe, K. Takeda, T. Sato, and T. Kakitsuka, “Directly modulated buried heterostructure DFB laser on SiO2/Si substrate fabricated by regrowth of InP using bonded active layer,” Opt. Express 22, 12139–12147 (2014).

[42] D. Liang, G. Kurczveil, C. H. Chen, M. Fiorentino, Z. Peng, and R. G. Beausoleil, “Silicon photonic integrated devices for optical interconnects” (2013), http://www.hpl.hp.com/techreports/ 2013/HPL 2013 56.pdf.

[43] D. Liang, S. Srinivasan, D. A. Fattal, M. Fiorentino, Z. H. Huang, D. T. Spencer, J. E. Bowers, and R. G. Beausoleil, “Teardrop reflector- assisted unidirectional hybrid silicon microring lasers,” IEEE Photon. Technol. Lett. 24, 1988–1990 (2012).

[44] B. R. Koch, E. J. Norberg, B. Kim, J. Hutchinson, J.-H. Shin, G. Fish, and A. Fang, “Integrated silicon photonic laser sources for telecom and datacom,” in National Fiber Optic Engineers Conference (Optical Society of America, 2013), paper PDP5C. 8.

[45] G. Kurczveil, M. J. Heck, J. D. Peters, J. M. Garcia, D. Spencer, and J. E. Bowers, “An integrated hybrid silicon multiwavelength AWG laser,” IEEE J. Sel. Top. Quantum Electron. 17, 1521–1527 (2011).

[46] G.-H. Duan, C. Jany, A. Le Liepvre, A. Accard, M. Lamponi, D. Make, P. Kaspar, G. Levaufre, N. Girard, and F. Lelarge, “Hybrid III-V on silicon lasers for photonic integrated circuits on silicon,” IEEE J. Sel. Top. Quantum Electron. 20, 158–170 (2014).

[47] S. Keyvaninia, G. Roelkens, D. Van Thourhout, C. Jany, M. Lamponi, A. Le Liepvre, F. Lelarge, D. Make, G.-H. Duan, D. Bordel, and J.-M. Fedeli, “Demonstration of a heterogeneously integrated III-V/SOI single wavelength tunable laser,” Opt. Express 21, 3784–3792 (2013).

[48] P. Dong, T.-C. Hu, T.-Y. Liow, Y.-K. Chen, C. Xie, X. Luo, G.-Q. Lo, R. Kopf, and A. Tate, “Novel integration technique for silicon/ III-V hybrid laser,” Opt. Express 22, 26854–26861 (2014).

[49] D. Liang, S. Srinivasan, M. Fiorentino, G. Kurczveil, J. E. Bowers, and R. G. Beausoleil, “A metal thermal shunt design for hybrid silicon microring laser,” in IEEE Optical Interconnects Conference (IEEE, 2012), pp. 20–23.

[50] C. Zhang, D. Liang, G. Kurczveil, J. Bowers, and R. Beausoleil, “High Temperature Hybrid Silicon Micro-ring Lasers with Thermal Shunts,” in Conference on Lasers and Electro- Optics, CLEO: 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper SW3F.5.

[51] M. N. Sysak, D. Liang, R. Jones, G. Kurczveil, M. Piels, M. Fiorentino, R. G. Beausoleil, and J. E. Bowers, “Hybrid silicon laser technology: A thermal perspective,” IEEE J. Sel. Top. Quantum Electron. 17, 1490–1498 (2011).

[52] H.-H. Chang, A. W. Fang, M. N. Sysak, H. Park, R. Jones, O. Cohen, O. Raday, M. J. Paniccia, and J. E. Bowers, “1310 nm silicon evanescent laser,” Opt. Express 15, 11466–11471 (2007).

[53] K. Takeda, T. Sato, T. Fujii, E. Kuramochi, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Heterogeneously integrated photonic-crystal lasers on silicon for on/off chip optical interconnects,” Opt. Express 23, 702–708 (2015).

[54] J. Van Campenhout, P. Rojo-Romeo, P. Regreny, C. Seassal, D. Van Thourhout, S. Verstuyft, L. Di Cioccio, J. M. Fedeli, C. Lagahe, and R. Baets, “Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit,” Opt. Express 15, 6744–6749 (2007).

[55] J. Van Campenhout, L. Liu, P. R. Romeo, D. Van Thourhout, C. Seassal, P. Regreny, L. Di Cioccio, J. M. Fedeli, and R. Baets, “A compact SOI-integrated multiwavelength laser source based on cascaded InP microdisks,” IEEE Photon. Technol. Lett. 20, 1345–1347 (2008).

[56] Y. Huang, S. Sui, M. Tang, Y. Yang, J. Xiao, and Y. Du, “Sixteenwavelength hybrid AlGaInAs/Si microdisk laser array,” IEEE J. Sel. Top. Quantum Electron. 51, 2600108 (2015).

[57] S. Keyvaninia, S. Verstuyft, S. Pathak, F. Lelarge, G. H. Duan, D. Bordel, J. M. Fedeli, T. De Vries, B. Smalbrugge, E. J. Geluk, J. Bolk, M. Smit, G. Roelkens, and D. Van Thourhout, “III-V-onsilicon multi-frequency lasers,” Opt. Express 21, 13675–13683 (2013).

[58] P. Mechet, S. Verstuyft, T. de Vries, T. Spuesens, P. Regreny, D. Van Thourhout, G. Roelkens, and G. Morthier, “Unidirectional III-V microdisk lasers heterogeneously integrated on SOI,” Opt. Express 21, 19339–19352 (2013).

[59] F. Peng, Z. Yejin, W. Yufei, L. Lei, Z. Siriguleng, W. Hailing, and Z. Wanhua, “A novel hybrid III-V/silicon deformed micro-disk single-mode laser,” J. Semicond. 36, 055008 (2015).

[60] Y. Zhang, Y.-D. Yang, Y.-Z. Huang, and A. W. Poon, “Directionalemission III-V-on-silicon microspiral and double-notch microdisk lasers for optical interconnects,” in Conference on Lasers and Electro-Optics, CLEO: Applications and Technology (Optical Society of America, 2014), paper JTu4A.118.

[61] A. W. Poon, Y. Zhang, and L. Zhang, “Hybrid silicon unidirectional- emission microspiral disk lasers for optical interconnect applications,” Proc. SPIE 9343, 934312 (2015).

[62] G. Roelkens, D. Van Thourhout, and R. Baets, “Continuous-wave lasing from DVS-BCB heterogeneously integrated laser diodes,” in Integrated Photonics and Nanophotonics Research and Applications (Optical Society of America, 2007), paper ITuG4.

[63] P. Mechet, F. Raineri, A. Bazin, Y. Halioua, T. Spuesens, T. J. Karle, P. Regreny, P. Monnier, D. Van Thourhout, I. Sagnes, R. Raj, G. Roelkens, and G. Morthier, “Uniformity of the lasing wavelength of heterogeneously integrated InP microdisk lasers on SOI,” Opt. Express 21, 10622–10631 (2013).

[64] L. Liu, G. Roelkens, J. Van Campenhout, J. Brouckaert, D. Van Thourhout, and R. Baets, “III-V/silicon-on-insulator nanophotonic cavities for optical network-on-chip,” J. Nanosci. Nanotechnol. 10, 1461–1472 (2010).

[65] L. Tao, L. Yuan, Y. Li, H. Yu, B. Wang, Q. Kan, W. Chen, J. Pan, G. Ran, and W. Wang, “4-λ InGaAsP-Si distributed feedback evanescent lasers with varying silicon waveguide width,” Opt. Express 22, 5448–5454 (2014).

[66] J. Ferrara, W. Yang, L. Zhu, P. Qiao, and C. J. Chang-Hasnain, “Heterogeneously integrated long-wavelength VCSEL using silicon high contrast grating on an SOI substrate,” Opt. Express 23, 2512–2523 (2015).

[67] E. Marchena, T. Creazzo, S. B. Krasulick, P. Yu, D. Van Orden, J. Y. Spann, C. C. Blivin, J. M. Dallesasse, P. Varangis, R. J. Stone, and A. Mizrahi, “Integrated tunable CMOS laser for Si photonics,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper PDP5 C.7.

[68] A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104, 041104 (2014).

[69] D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials 3, 1782– 1802 (2010).

[70] S. Keyvaninia, M. Muneeb, S. Stankovi , P. Van Veldhoven, D. Van Thourhout, and G. Roelkens, “Ultra-thin DVS-BCB adhesive bonding of III-V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate,” Opt. Mater. Express 3, 35–46 (2013).

[71] Dow Chemical, http://www.dow.com/cyclotene/solution/ thermprop.htm.

[72] Y. Zhang, S. Y. Yang, H. Guan, A. E. J. Lim, G. Q. Lo, P. Magill, T. Baehr-Jones, and M. Hochberg, “Sagnac loop mirror and microring based laser cavity for silicon-on-insulator,” Opt. Express 22, 17872–17879 (2014).

[73] J. H. Lee, I. Shubin, J. Yao, J. Bickford, Y. Luo, S. Y. Lin, S. S. Djordjevic, H. D. Thacker, J. E. Cunningham, K. Raj, X. Zheng, and A. V. Krishnamoorthy, “High power and widely tunable Si hybrid external-cavity laser for power efficient Si photonics WDM links,” Opt. Express 22, 7678–7685 (2014).

[74] D. Liang, M. Fiorentino, S. T. Todd, G. Kurczveil, R. G. Beausoleil, and J. E. Bowers, “Fabrication of silicon-on-diamond substrate and low-loss optical waveguides,” IEEE Photon. Technol. Lett. 23, 657–659 (2011).

[75] J. E. Bowers, J. T. Bovington, A. Y. Liu, A. C. Gossard, G. Li, T. Creazzo, E. Marchena, P. K. Yu, S. Krasulick, and L. Schares, “A path to 300 mm hybrid silicon photonic integrated circuits,” in Optical Fiber Communication Conference, San Francisco, CA (IEEE, 2014).

[76] S. Menezo, H. Duprez, A. Descos, D. Bordel, L. Sanchez, P. Brianceau, L. Fulbert, V. Carron, and B. Ben Bakir, “Advances on III-V on silicon DBR and DFB lasers for WDM optical interconnects and associated heterogeneous integration 200 mm-wafer-scale technology,” in 2014 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICs), La Jolla, CA (IEEE, 2014).

[77] G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiplequantum- well spiral-shaped micropillars,” Appl. Phys. Lett. 83, 1710–1712 (2003).

[78] M. Kneissl, M. Teepe, N. Miyashita, N. M. Johnson, G. D. Chern, and R. K. Chang, “Current-injection spiral-shaped microcavity disk laser diodes with unidirectional emission,” Appl. Phys. Lett. 84, 2485–2487 (2004).

[79] L. Ge, O. Malik, and H. E. Türeci, “Enhancement of laser powerefficiency by control of spatial hole burning interactions,” Nat. Photonics 8, 871–875 (2014).

[80] Y. D. Yang, Y. Zhang, Y. Z. Huang, and A. W. Poon, “Direct-modulated waveguide-coupled microspiral disk lasers with spatially selective injection for on-chip optical interconnects,” Opt. Express 22, 824–838 (2014).

[81] D. A. B. Miller, “Energy consumption in optical modulators for interconnects,” Opt. Express 20, A293–A308 (2012).

[82] W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjoh, “50-Gb/s direct modulation of 1.3-μm InGaAlAs-based DFB laser with ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19, 1500908 (2013).

[83] S. Matsuo, T. Fujii, K. Hasebe, K. Takeda, T. Sato, and T. Kakitsuka, “40-Gbit/s direct modulation of membrane buried heterostructure DFB laser on SiO2/Si substrate,” in 2014 International Semiconductor Laser Conference (ISLC) (IEEE, 2014), pp. 30–31.

[84] G. de Valicourt, Y. Pointurier, J.-C. Antona, and G. Duan, “A 20 Gbit/s directly modulated hybrid III-V/Si laser tunable over 12 wavelengths for short-reach access network,” in 2014 European Conference on Optical Communication (ECOC) (IEEE, 2014).

[85] J. H. Marsh, “Quantum well intermixing,” Semicond. Sci. Technol. 8, 1136–1155 (1993).

[86] S. Srinivasan, A. W. Fang, D. Liang, J. Peters, B. Kaye, and J. E. Bowers, “Design of phase-shifted hybrid silicon distributed feedback lasers,” Opt. Express 19, 9255–9261 (2011).

[87] B. R. Koch, A. W. Fang, E. Lively, R. Jones, O. Cohen, D. J. Blumenthal, and J. E. Bowers, “Mode locked and distributed feedback silicon evanescent lasers,” Laser Photon. Rev. 3, 355–369 (2009).

[88] S. Srinivasan, A. Arrighi, M. J. Heck, J. Hutchinson, E. Norberg, G. Fish, and J. E. Bowers, “Harmonically mode-locked hybrid silicon laser with intra-cavity filter to suppress supermode noise,” IEEE J. Sel. Top. Quantum Electron. 20, 8–15 (2014).

[89] M. A. Foster, J. S. Levy, O. Kuzucu, K. Saha, M. Lipson, and A. L. Gaeta, “Silicon-based monolithic optical frequency comb source,” Opt. Express 19, 14233–14239 (2011).

[90] P. Dumais, J. Jiang, H. Mehrvar, D. Celo, D. Goodwill, and E. Bernier, “Performance optimization for switch matrices based on carrier-injection-driven Mach-Zehnder switch cells,” in 2014 IEEE 11th International Conference on Group IV Photonics (GFP) (IEEE, 2014), pp. 96–97.

[91] B. G. Lee, N. Dupuis, P. Pepeljugoski, L. Schares, R. Budd, J. R. Bickford, and C. L. Schow, “Silicon photonic switch fabrics in computer communications systems,” J. Lightwave Technol. 33, 768–777 (2015).

[92] H. Mehrvar, “Hybrid photonic ethernet switch for datacenters,” in Optical Fiber Communication Conference (Optical Society of America, 2014), paper M3E.6.

[93] L. Zhou, L. Lu, Z. Li, and J. Chen, “Broadband 4 × 4 non-blocking optical switch fabric based on Mach-Zehnder interferometers,” in 2014 13th International Conference on Optical Communications and Networks (ICOCN) (IEEE, 2014).

[94] P. Dong, Y.-K. Chen, T. Gu, L. L. Buhl, D. T. Neilson, and J. H. Sinsky, “Reconfigurable 100 Gb/s silicon photonic network-onchip,” J. Opt. Commun. Netw. 7, A37–A43 (2015).

[95] L. Chen, E. Hall, L. Theogarajan, and J. Bowers, “Photonic switching for data center applications,” IEEE Photon. J. 3, 834–844 (2011).

[96] S. S. Haykin, Communication Systems (Wiley, 2001). 97. IME, https://www.a star.edu.sg/ime/.

[97] IMEC, http://www2.imec.be/be_en/home.html.

[98] Y. Shen, I. B. Divliansky, D. N. Basov, and S. Mookherjea, “Electric-field-driven nano-oxidation trimming of silicon microrings and interferometers,” Opt. Lett. 36, 2668–2670 (2011).

[99] A. H. Atabaki, A. A. Eftekhar, M. Askari, and A. Adibi, “Accurate post-fabrication trimming of ultra-compact resonators on silicon,” Opt. Express 21, 14139–14145 (2013)

[100] D. Bachman, Z. Chen, R. Fedosejevs, Y. Y. Tsui, and V. Van, “Permanent fine tuning of silicon microring devices by femtosecond laser surface amorphization and ablation,” Opt. Express 21, 11048–11056 (2013).

[101] Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5-μm radius,” Opt. Express 16, 4309–4315 (2008).

[102] P. Dong, S. Liao, H. Liang, R. Shafiiha, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Submilliwatt, ultrafast and broadband electro-optic silicon switches,” Opt. Express 18, 25225–25231 (2010).

[103] H. Zhou, Y. Zhao, W. Wang, J. Yang, M. Wang, and X. Jiang, “Performance influence of carrier absorption to the Mach-Zehnder-interference based silicon optical switches,” Opt. Express 17, 7043–7051 (2009).

[104] J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express 17, 14627–14633 (2009).

[105] P. Alipour, E. S. Hosseini, A. A. Eftekhar, B. Momeni, and A. Adibi, “Athermal performance in high-Q polymer-clad silicon microdisk resonators,” Opt. Lett. 35, 3462–3464 (2010).

[106] S. S. Djordjevic, K. Shang, B. Guan, S. T. S. Cheung, L. Liao, J. Basak, H.-F. Liu, and S. J. B. Yoo, “CMOS-compatible, athermal silicon ring modulators clad with titanium dioxide,” Opt. Express 21, 13958–13968 (2013).

[107] B. Guha, J. Cardenas, and M. Lipson, “Athermal silicon microring resonators with titanium oxide cladding,” Opt. Express 21, 26557–26563 (2013).

[108] B. Guha, K. Preston, and M. Lipson, “Athermal silicon microring electro-optic modulator,” Opt. Lett. 37, 2253–2255 (2012).

[109] L. Lu, L. Zhou, X. Sun, J. Xie, Z. Zou, H. Zhu, X. Li, and J. Chen, “CMOS-compatible temperature-independent tunable silicon optical lattice filters,” Opt. Express 21, 9447–9456 (2013).

[110] X. Zheng, E. Chang, P. Amberg, I. Shubin, J. Lexau, F. Liu, H. Thacker, S. S. Djordjevic, S. Lin, Y. Luo, J. Yao, J.-H. Lee, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “A highspeed, tunable silicon photonic ring modulator integrated with ultra-efficient active wavelength control,” Opt. Express 22, 12628–12633 (2014).

[111] K. Padmaraju, D. F. Logan, T. Shiraishi, J. J. Ackert, A. P. Knights, and K. Bergman, “Wavelength locking and thermally stabilizing microring resonators using dithering signals,” J. Lightwave Technol. 32, 505–512 (2014).

[112] X. Zhu, K. Padmaraju, L.-W. Luo, S. Yang, M. Glick, R. Dutt, M. Lipson, and K. Bergman, “Fast wavelength locking of a microring resonator,” IEEE Photon. Technol. Lett. 26, 2365–2368 (2014).

[113] J. A. Cox, A. L. Lentine, D. C. Trotter, and A. L. Starbuck, “Control of integrated micro-resonator wavelength via balanced homodyne locking,” Opt. Express 22, 11279–11289 (2014).

[114] Y. Li and A. W. Poon, “Active resonance wavelength stabilization for silicon microring resonators with an in-resonator defect- state-absorption-based photodetector,” Opt. Express 23, 360–372 (2015).

[115] Y. Zhang, Y. Li, S. Feng, and A. Poon, “Towards adaptively tuned silicon microring resonators for optical networks-onchip applications,” IEEE J. Sel. Top. Quantum Electron. 20, 136–149 (2014).

[116] Y. Li, S. Feng, Y. Zhang, and A. W. Poon, “In-microresonator linear-absorption-based real-time photocurrent-monitoring and tuning with closed-loop control for silicon microresonators,” U.S. patent application 14/057,679 (filed October 18, 2013).

[117] Y. Li and A. W. Poon, “Active resonance wavelength stabilization for silicon microring resonators using slope-detection with an inresonator defect-state-absorption-based photodetector,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2015), paper SM2I.2

[118] S. Matsuo, T. Sato, K. Takeda, A. Shinya, K. Nozaki, H. Taniyama, M. Notomi, K. Hasebe, and T. Kakitsuka, “Ultralow operating energy electrically driven photonic crystal lasers,” IEEE J. Sel. Top. Quantum Electron. 19, 4900311 (2013).

[119] S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, and F. Horst, “A 90 nm CMOS integrated nano-photonics technology for 25 Gbps WDM optical communications applications,” in IEEE International Electron Devices Meeting (IEDM), San Francisco, CA (IEEE, 2012).

[120] H. D. Thacker, Y. Luo, J. Shi, I. Shubin, J. Lexau, X. Zheng, G. Li, J. Yao, J. Costa, and T. Pinguet, “Flip-chip integrated silicon photonic bridge chips for sub-picojoule per bit optical links,” in 2010 Proceedings 60th Electronic Components and Technology Conference (ECTC) (IEEE, 2010), pp. 240–246.

Yu Li, Yu Zhang, Lei Zhang, Andrew W. Poon. Silicon and hybrid silicon photonic devices for intra-datacenter applications: state of the art and perspectives [Invited][J]. Photonics Research, 2015, 3(5): 05000B10.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!