光学学报, 2016, 36 (9): 0911009, 网络出版: 2016-09-09   

相对平行直线扫描CT滤波反投影图像重建 下载: 553次

Filtered Back-Projection Image Reconstruction Algorithm for Opposite Parallel Linear CT Scanning
伍伟文 1,2,*全超 1刘丰林 1,2
作者单位
1 重庆大学光电技术及系统教育部重点实验室, 重庆 400044
2 重庆大学工业CT无损检测教育部工程研究中心, 重庆 400044
摘要
射线源和探测器作相对平行直线运动的计算机层析成像扫描系统(OPLCT)结构简单,成本低,易于实现便携或可移动的应用需求。该扫描方式的前期研究采用顺序子集-同时迭代重建算法,该算法存在图像重建时间长、不能实现快速成像等问题。从傅里叶积分定理出发,推导OPLCT滤波反投影(OPLFBP)图像重建算法。构建的一次直线扫描(1T)图像重建模型属于有限角问题,OPLFBP算法不能完全重建出目标图像;进一步提出多次线性扫描并构建了两次垂直(2T)和三次圆周均匀分布(3T)的CT直线扫描模型。1T、2T和3T模型下的仿真结果表明OPLFBP算法正确可行,且2T、3T扫描与相似参数下圆周扇束扫描滤波反投影算法得到的重建图像相近。
Abstract
The computed tomography setup for the opposite parallel linear scanning (OPLCT) of X-ray source and detectors is simple in structure and feasible to achieve portability or mobility. The order subset-simultaneous algebraic reconstruction algorithm has been used in the preliminary studies, but its image reconstruction time is too long to realize fast imaging. To address this problem, we proposed a filtered back-projection algorithm for OPLCT (OPLFBP) based on the Fourier’s theorem. A single translation (1T) model was constructed for image reconstruction, while this model results in limited angle problem and cannot completely reconstruct the object image using the OPLFBP algorithm. Further, a multiple translation (MT) model was proposed, and meanwhile, models for two orthogonal translations (2T) and three symmetrical translations (3T) were constructed respectively. The simulation results for the 1T, 2T and 3T modes show that the OPLFBP algorithm is effective, and the 2T and 3T scanning modes and the traditional circular scanning mode are comparable in terms of reconstrution time and image quality.
参考文献

[1] Fuchs V R, Sox H C, Jr. Physicians’ views of the relative importance of thirty medical innovations[J]. Health Affairs, 2001, 20(5): 30-42.

[2] 周忠喜, 高原. 医疗器械行业现状与发展前景[J]. 科技视界, 2013(6): 174-176.

[3] Wang G, Liu F, Liu F L, et al. Top-level design of the first CT-MRI scanner[C]. 12th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, 2013: 975-978.

[4] Liu F L, Yu H Y, Cong W X, et al. Top-level design and pilot analysis of low-end CT scanners based on linear scanning for developing countries[J]. Journal of X-Ray Science and Technology, 2014, 22(5): 673-686.

[5] 王珏, 刘丰林, 邹永宁. 一种电子直线扫描微纳焦点CT扫描系统及方法: CN104757988A[P]. 2015-07-08.

    Wang Jue, Liu Fenglin, Zou Yongning. Electronic linear scanning micro-nano focus CT scanning system and method: CN104757988A[P]. 2015-07-08.

[6] Smith B D, Singh T. Fan-beam reconstruction from a straight line of source points[J]. IEEE Transactions on Medical Imaging, 1993, 12(1): 10-18.

[7] Sidky E Y, Zou Y, Pan X C. Volume image reconstruction from a straight-line source trajectory[C]. IEEE Nuclear Science Symposium Conference Record, 2005, 5: 2441-2444.

[8] Gao H W, Zhang L, Xing Y, et al. Volumetric imaging from a multi-segments straight-line trajectory and a practical reconstruction algorithm[J]. Optical Engineering, 2007, 46(7): 077004.

[9] Gao H W, Zhang L, Chen Z Q, et al. Direct filtered-backprojection-type reconstruction from a straight-line trajectory[J]. Optical Engineering, 2006, 46(5): 057003.

[10] Gao H W, Zhang L, Chen Z Q, et al. Straight-line-trajectory-based X-ray tomographic imaging for security inspections: System design, image reconstruction and preliminary results[J]. IEEE Transactions on Nuclear Science, 2013, 60(5): 3955-3968.

[11] Liu B, Zeng L. Parallel SART algorithm of linear scan cone-beam CT for fixed pipeline[J]. Journal of X-Ray Science and Technology, 2009, 17(3): 221-232.

[12] Fu J, Zhang J, Tan R. A straight-line trajectory tomography method based on multiple tilted X-ray cone-beams[J]. Applied Mechanics & Materials, 2012, 239-240: 238-242.

[13] Zhang H M, Wang L Y, Yan B, et al. Image reconstruction based on total-variation minimization and alternating direction method in linear scan computed tomography[J]. Chinese Physics B, 2013, 22(7): 078701.

[14] 马继明, 张建奇, 宋顾周, 等. 全变分约束迭代滤波反投影CT重建[J]. 光学学报, 2015, 35(2): 0234002.

    Ma Jiming, Zhang Jianqi, Song Guzhou, et al. Total variation constrained iterative filtered backprojection CT reconstruction method[J]. Acta Optica Sinica, 2015, 35(2): 0234002.

[15] Kak A C, Slaney M. Principles of computerized tomographic imaging[M]. New York: IEEE Press, 1988.

[16] Natterer F. The mathematics of computerized tomography[J]. Medical Physics, 29(1): 106-108.

[17] Rieder A, Faridani A. The semidiscrete filtered backprojection algorithm is optimal for tomographic inversion[J]. SIAM Journal on Numerical Analysis, 2004, 41(3): 869-892.

[18] Ye Y, Wang G. Filtered backprojection formula for exact image reconstruction from cone-beam data along a general scanning curve[J]. Medical Physics, 2005, 32(1): 42-48.

伍伟文, 全超, 刘丰林. 相对平行直线扫描CT滤波反投影图像重建[J]. 光学学报, 2016, 36(9): 0911009. Wu Weiwen, Quan Chao, Liu Fenglin. Filtered Back-Projection Image Reconstruction Algorithm for Opposite Parallel Linear CT Scanning[J]. Acta Optica Sinica, 2016, 36(9): 0911009.

本文已被 11 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!