光子学报, 2019, 48 (7): 0701001, 网络出版: 2019-07-31   

3.4 μm处NO2吸收光谱特性及在差分吸收激光雷达中的应用

Absorption Spectrum Characteristics of NO2 near 3.4 μm and Its Application in Differential Absorption Lidar
作者单位
1 南京信息工程大学 大气物理学院, 气象灾害预警与评估协同创新中心, 中国气象局气溶胶-云-降水重点实验室, 气象灾害教育部重点实验室, 南京 210044
2 南京先进激光技术研究院, 南京 210038
引用该论文

蔡镐泽, 卜令兵, 龚宇, 杨彬, 周军. 3.4 μm处NO2吸收光谱特性及在差分吸收激光雷达中的应用[J]. 光子学报, 2019, 48(7): 0701001.

CAI Hao-ze, BU Ling-bing, GONG Yu, YANG Bin, ZHOU Jun. Absorption Spectrum Characteristics of NO2 near 3.4 μm and Its Application in Differential Absorption Lidar[J]. ACTA PHOTONICA SINICA, 2019, 48(7): 0701001.

参考文献

[1] PIKHART H, BOBAK M, KRIZ B, et al. Outdoor air concentrations of nitrogen dioxide and sulfur dioxide and prevalence of wheezing in school children[J]. Epidemiology, 2000, 11(2): 153-160.

[2] KORTH H G. The pathobiochemistry of nitrogen dioxide[J]. Biological Chemistry, 2002, 383(3-4): 389-399.

[3] SACHIN D G, R J VANDER A, BEIG G, et al. Satellite derived trends in NO2 over the major global hotspot regions during the past decade and their inter-comparison[J]. Environmental Pollution, 2009, 157(6): 1873-1878.

[4] TIAN G, MOOSMLLER H, ARNOTT W P. Influence of photolysis on multispectralphotoacoustic measurement of nitrogen dioxide concentration[J]. Journal of the Air & Waste Management Association, 2013, 63(9): 1091-1097.

[5] ORPHAL J, DREHER S, VOIGT S, et al. The near-infrared bands of NO2 observed by high-resolution Fourier-transform spectroscopy[J]. Journal of Chemical Physics, 1998, 109(23): 10217-10211.

[6] LIN Wei-hao, GAO Zhi-hui, YANG Yong, et al. NO2 detection based on laser spectrum differential method[J]. Laser Technology, 2014, 38(6): 835-838.

[7] LIANG Mei, PENG Guan, ZHENG Kong. Remotesensing of atmospheric NO2 by employing the continuous-wave differential absorption lidar technique[J]. Optics Express, 2017, 25(20): A953.

[8] KOLSCH H J, RAIROUX P, WOLF J P, et al. Simultaneous NO and NO2 DIAL measurement using BBO crystals[J]. Applied Optics, 1989, 28(11): 2052-2056.

[9] TORIUMI R, TAI H, TAKEUCHI N. Tunable solid-state blue laser differential absorption lidar system for NO2 monitoring[J]. Optical Engineering, 1996, 35(8): 2371-2375.

[10] CELARIER E A, BRINKSMA E J, GLEASON J F, et al. Validation of ozone monitoring instrument nitrogen dioxide columns[J]. Journal of Geophysical Research, 2008, 113(D15): D15S15.

[11] 刘尊洋, 卞进田, 邵立, 等. 中红外激光技术研究进展[J]. 激光与红外, 2013, 43(8):853-858.

    LIU Zun-yang, BIAN Jin-tian, SHAO Li, et al. Progress of mid infrared laser technology[J]. Laser and Infrared, 2013, 43(8): 853-858.

[12] YI Hong-ming, LIU Kun, CHEN Wei-dong, et al. Application of a broadband blue laser diode to trace NO2 detection using off-beam quartz-enhanced photoacoustic spectroscopy[J]. Optics Letters, 2011, 36(4): 481-483.

[13] 崔厚欣, 杜振辉, 陈文亮, 等. NO2吸收截面在410~440 nm波段内的温度特性[J]. 天津大学学报:自然科学与工程技术版, 2008, 41(10):1162-1166.

    CUI Hou-xin, DU Zhen-hui, CHEN Wen-liang, et al. Effect of temperature on the absorption cross-section of NO2 in 410~440 nm Wavelength[J]. Journal of Tianjin University, 2008, 41(10): 1162-1166.

[14] SA Ri-na, BU Ling-bing, WANG Qin, et al. Spectral characteristics of polluted gases and their detection by mid-infrared differential absorption lidar[J]. Optik, 2017, 149: 113-124.

[15] 徐玲, 卜令兵, 蔡镐泽, 等. 中红外差分吸收激光雷达NO2测量波长选择及探测能力模拟[J]. 红外与激光工程, 2018, 47(10):77-84.

    XU Ling, BU Ling-bing, CAI Hao-ze, et al. Wavelength selection and detection capability simulation of the mid-infrared DIAL for NO2 detecion[J]. Laser and Infrared, 2018, 47(10): 77-84.

[16] 齐汝宾, 赫树开, 李新田, 等. 基于HITRAN光谱数据库的TDLAS直接吸收信号仿真研究[J]. 光谱学与光谱分析, 2015, 35(1) :172-177.

    QI Ru-bin, HAO Shu-kai, LI Xin-tian, et al. Simulation of TDLAS direct absorption based on HITRAN database[J]. Spectroscopy and Spectral Analysis, 2015, 35(1):172-177.

[17] 陈亚峰, 王晓宾, 刘秋武, 等. 车载二氧化硫差分吸收激光雷达系统[J]. 光子学报, 2017, 46(7): 0701004.

    CHEN Ya-feng, WANG Xiao-bin, LIU Qiu-wu, et al. Mobile SO2 Differential absorption lidar system[J]. Acta Photonica Sinica, 2017, 46(7): 0701004.

[18] 朱湘飞, 林兆祥, 刘林美, 等. 温度压强对CO2吸收光谱的影响[J]. 物理学报, 2014, 63(17):153-159.

    ZHU Xiang-fei, LIN Zhao-xiang, LIU Lin-mei, et al. Influence of temperature and pressure on absorption spectrum of around 1.6 μm for differential absorption lidar[J]. Acta Physica Sinica, 2014, 63(17): 153-159.

[19] CARON J, DURAND Y, BEZY J L, et al. Performance modeling for A-SCOPE: a space-borne lidar measuring atmospheric CO2[C]. SPIE, 2009.

[20] CARON J, DURAND Y. Operating wavelengths optimization for a spaceborne lidar measuring atmospheric CO2[J]. Applied Optics, 2009, 48(28): 5413-5422.

[21] 刘豪. 大气二氧化碳探测差分吸收激光雷达技术研究[D].上海:上海技术物理研究所,2015.

    LIU Hao. Research on differential absorption lidar for CO2 sensing[D]. Shanghai: Shanghai Institute of Technical Physics, 2015.

蔡镐泽, 卜令兵, 龚宇, 杨彬, 周军. 3.4 μm处NO2吸收光谱特性及在差分吸收激光雷达中的应用[J]. 光子学报, 2019, 48(7): 0701001. CAI Hao-ze, BU Ling-bing, GONG Yu, YANG Bin, ZHOU Jun. Absorption Spectrum Characteristics of NO2 near 3.4 μm and Its Application in Differential Absorption Lidar[J]. ACTA PHOTONICA SINICA, 2019, 48(7): 0701001.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!