光子学报, 2019, 48 (7): 0701001, 网络出版: 2019-07-31   

3.4 μm处NO2吸收光谱特性及在差分吸收激光雷达中的应用

Absorption Spectrum Characteristics of NO2 near 3.4 μm and Its Application in Differential Absorption Lidar
作者单位
1 南京信息工程大学 大气物理学院, 气象灾害预警与评估协同创新中心, 中国气象局气溶胶-云-降水重点实验室, 气象灾害教育部重点实验室, 南京 210044
2 南京先进激光技术研究院, 南京 210038
摘要
为使中红外差分吸收激光雷达能够精确测量NO2气体浓度, 对NO2在中红外波段的吸收光谱特性进行测量分析.采用光参量放大激光器的λon和光参量振荡激光器λoff两路激光分别进行吸收谱线测量实验.用谱线宽小于0.05 nm的λon激光测量了NO2气体在3 410~3 433 nm的吸收光谱, 计算得到其吸收截面, 采集分析了NO2在291 K、308 K、363 K三个温度下的光谱特性, 用谱线宽约为10 nm的λoff激光采集了3 400~3 435 nm的吸收谱线.测量结果表明, 在3 410~3 433 nm波段, 温度和吸收截面值呈负相关, 测量的谱线与HITRAN数据库相关系数达到0.92以上; 针对λoff激光下的吸收谱线, 采用了改进的卷积修正方法, 测量结果和拟合结果相关系数为0.97.将实测的on和off波长处的吸收截面应用于使用该波长对的中红外差分吸收激光雷达仿真上, 拟合差分吸收激光雷达系统浓度测量误差, 验证了基于该波长对的差分吸收激光雷达方案的可行性.
Abstract
In order to accurately measure the concentration of NO2 gas by mid-infrared differential absorption lidar, the absorption spectrum characteristics of NO2 in mid-infrared band were measured and analyzed. The absorption cell experiments were conducted using two wavelengths λon and λoff emitted from OPA lasers and OPO lasers respectively. The absorption cross section of NO2 gas in the range of 3 410~3 433 nm is measured by a laser λon whose spectral line-width is less than 0.05 nm. The absorption cross sections at 291 K, 308 K and 363 K were acquired respectively. And the absorption spectra from 3 400~3 435 nm were also acquired by a laser λoff with spectral line-width being 10 nm. The experimental results show that the absorption cross-section is negatively correlated with temperature in the range of 3 410~3 433 nm, consisted with HITRAN database and the correlation coefficient between the measured data and the HITRAN data is above 0.92. A new convolution correction method is used to calculate the absorption spectrum line under laser λoff. The correlation coefficient between the measured results and the fitting results is 0.97. The measured absorption cross sections at the on and off wavelengths are applied to the simulation of the mid-infrared differential absorption lidar, the concentration error of differential absorption lidar is simulated, which verified the feasibility of the scheme of differential absorption lidar.
参考文献

[1] PIKHART H, BOBAK M, KRIZ B, et al. Outdoor air concentrations of nitrogen dioxide and sulfur dioxide and prevalence of wheezing in school children[J]. Epidemiology, 2000, 11(2): 153-160.

[2] KORTH H G. The pathobiochemistry of nitrogen dioxide[J]. Biological Chemistry, 2002, 383(3-4): 389-399.

[3] SACHIN D G, R J VANDER A, BEIG G, et al. Satellite derived trends in NO2 over the major global hotspot regions during the past decade and their inter-comparison[J]. Environmental Pollution, 2009, 157(6): 1873-1878.

[4] TIAN G, MOOSMLLER H, ARNOTT W P. Influence of photolysis on multispectralphotoacoustic measurement of nitrogen dioxide concentration[J]. Journal of the Air & Waste Management Association, 2013, 63(9): 1091-1097.

[5] ORPHAL J, DREHER S, VOIGT S, et al. The near-infrared bands of NO2 observed by high-resolution Fourier-transform spectroscopy[J]. Journal of Chemical Physics, 1998, 109(23): 10217-10211.

[6] LIN Wei-hao, GAO Zhi-hui, YANG Yong, et al. NO2 detection based on laser spectrum differential method[J]. Laser Technology, 2014, 38(6): 835-838.

[7] LIANG Mei, PENG Guan, ZHENG Kong. Remotesensing of atmospheric NO2 by employing the continuous-wave differential absorption lidar technique[J]. Optics Express, 2017, 25(20): A953.

[8] KOLSCH H J, RAIROUX P, WOLF J P, et al. Simultaneous NO and NO2 DIAL measurement using BBO crystals[J]. Applied Optics, 1989, 28(11): 2052-2056.

[9] TORIUMI R, TAI H, TAKEUCHI N. Tunable solid-state blue laser differential absorption lidar system for NO2 monitoring[J]. Optical Engineering, 1996, 35(8): 2371-2375.

[10] CELARIER E A, BRINKSMA E J, GLEASON J F, et al. Validation of ozone monitoring instrument nitrogen dioxide columns[J]. Journal of Geophysical Research, 2008, 113(D15): D15S15.

[11] 刘尊洋, 卞进田, 邵立, 等. 中红外激光技术研究进展[J]. 激光与红外, 2013, 43(8):853-858.

    LIU Zun-yang, BIAN Jin-tian, SHAO Li, et al. Progress of mid infrared laser technology[J]. Laser and Infrared, 2013, 43(8): 853-858.

[12] YI Hong-ming, LIU Kun, CHEN Wei-dong, et al. Application of a broadband blue laser diode to trace NO2 detection using off-beam quartz-enhanced photoacoustic spectroscopy[J]. Optics Letters, 2011, 36(4): 481-483.

[13] 崔厚欣, 杜振辉, 陈文亮, 等. NO2吸收截面在410~440 nm波段内的温度特性[J]. 天津大学学报:自然科学与工程技术版, 2008, 41(10):1162-1166.

    CUI Hou-xin, DU Zhen-hui, CHEN Wen-liang, et al. Effect of temperature on the absorption cross-section of NO2 in 410~440 nm Wavelength[J]. Journal of Tianjin University, 2008, 41(10): 1162-1166.

[14] SA Ri-na, BU Ling-bing, WANG Qin, et al. Spectral characteristics of polluted gases and their detection by mid-infrared differential absorption lidar[J]. Optik, 2017, 149: 113-124.

[15] 徐玲, 卜令兵, 蔡镐泽, 等. 中红外差分吸收激光雷达NO2测量波长选择及探测能力模拟[J]. 红外与激光工程, 2018, 47(10):77-84.

    XU Ling, BU Ling-bing, CAI Hao-ze, et al. Wavelength selection and detection capability simulation of the mid-infrared DIAL for NO2 detecion[J]. Laser and Infrared, 2018, 47(10): 77-84.

[16] 齐汝宾, 赫树开, 李新田, 等. 基于HITRAN光谱数据库的TDLAS直接吸收信号仿真研究[J]. 光谱学与光谱分析, 2015, 35(1) :172-177.

    QI Ru-bin, HAO Shu-kai, LI Xin-tian, et al. Simulation of TDLAS direct absorption based on HITRAN database[J]. Spectroscopy and Spectral Analysis, 2015, 35(1):172-177.

[17] 陈亚峰, 王晓宾, 刘秋武, 等. 车载二氧化硫差分吸收激光雷达系统[J]. 光子学报, 2017, 46(7): 0701004.

    CHEN Ya-feng, WANG Xiao-bin, LIU Qiu-wu, et al. Mobile SO2 Differential absorption lidar system[J]. Acta Photonica Sinica, 2017, 46(7): 0701004.

[18] 朱湘飞, 林兆祥, 刘林美, 等. 温度压强对CO2吸收光谱的影响[J]. 物理学报, 2014, 63(17):153-159.

    ZHU Xiang-fei, LIN Zhao-xiang, LIU Lin-mei, et al. Influence of temperature and pressure on absorption spectrum of around 1.6 μm for differential absorption lidar[J]. Acta Physica Sinica, 2014, 63(17): 153-159.

[19] CARON J, DURAND Y, BEZY J L, et al. Performance modeling for A-SCOPE: a space-borne lidar measuring atmospheric CO2[C]. SPIE, 2009.

[20] CARON J, DURAND Y. Operating wavelengths optimization for a spaceborne lidar measuring atmospheric CO2[J]. Applied Optics, 2009, 48(28): 5413-5422.

[21] 刘豪. 大气二氧化碳探测差分吸收激光雷达技术研究[D].上海:上海技术物理研究所,2015.

    LIU Hao. Research on differential absorption lidar for CO2 sensing[D]. Shanghai: Shanghai Institute of Technical Physics, 2015.

蔡镐泽, 卜令兵, 龚宇, 杨彬, 周军. 3.4 μm处NO2吸收光谱特性及在差分吸收激光雷达中的应用[J]. 光子学报, 2019, 48(7): 0701001. CAI Hao-ze, BU Ling-bing, GONG Yu, YANG Bin, ZHOU Jun. Absorption Spectrum Characteristics of NO2 near 3.4 μm and Its Application in Differential Absorption Lidar[J]. ACTA PHOTONICA SINICA, 2019, 48(7): 0701001.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!