激光与光电子学进展, 2018, 55 (9): 092203, 网络出版: 2018-09-08   

基于Delano图的手机镜头光学系统设计 下载: 1121次

Optical System Design for Cell Phone Camera Lens Based on Delano Diagram
作者单位
1 舜宇光学科技(集团)有限公司研发部, 浙江 宁波 315400
2 长春理工大学光电工程学院, 吉林 长春 130022
摘要
手机镜头朝着高分辨率、大孔径、超薄化的发展方向。根据手机镜头的设计要求, 研究了设计要求参量与Delano图的相关约束条件和目标函数的转换关系, 结合蒙特卡罗-粒子群优化(PSO)混合算法, 实现了手机镜头初始结构的快速求解生成。使用所提出的方法设计了一款5片式2000万高像素的超薄长焦手机镜头, 结果表明, 在1/4奈奎斯特设计频率125 lp/mm下, 0.8之内所有视场的调制传递函数(MTF)的值均大于60%, 与采用前期PWC法求得的初始结构所设计开发的具有相同规格参数的6片式镜头相比, 边缘视场的模拟良率提升了近10%。将所设计的5片式2000万像素镜头进行加工及TV line实拍测试, 在中心和0.8视场分别得到了2300 LW/PH和1700 LW/PH的解像能力。设计和加工后的实拍验证结果表明, 基于Delano图的手机镜头初始结构的求解方法能够明显提高设计效率, 且可以得到更高的良品率。
Abstract
Nowadays, cell phone lens is developing towards high resolution, large aperture and ultra-thin thickness. According to the design requirement of cell phone lens, we study the relationship between the design parameters and constrain conditions and objective function in Delano diagram. With the Mente Carlo-particle swarm optimization (PSO) hybrid optimization algorithm, the automatic generation of the cell phone lens initial configuration is realized. Taking the proposed method, we design a 5 pieces-twenty million pixels and ultra-thin tele-lens of cell phone. The design results show that the modulation transfer function (MTF) is greater than 60% within 0.8 field of view at the 1/4 Nyquist frequency 125 lp/mm. Compared with the 6 pieces lens with the same design requirement parameters, which is based on PWC method, the yield rate is increased by 10% at the edge of view by the tolerance simulation. By the TV line test of the 5 pieces-twenty million pixels lens after the fabrication, the resolving power of 2300 LW/PH and 1700 LW/PH at the centre and the 0.8 field of view are obtained. The outcome of design, manufacturing and TV line test show that, the solving method of initial configuration for cell phone lens based on Delano diagram can help to improve the design efficiency and get higher yield.
参考文献

[1] Delano E. First-order design and the y, y- diagram[J]. Applied Optics, 1963, 2(12): 1251-1256.

[2] Shack R V. Analytic system design with pencil and ruler—the advantages of the y-y- diagram[J]. Proceedings of SPIE, 1974, 39: 127-141.

[3] Kessler D, Shack R V. y, y- diagram, a powerful optical design method for laser systems[J]. Applied Optics, 1992, 31(15): 2692-2707.

[4] Lopezlopez F J. The application of the Delano y, y- diagram to optical design[D]. Tucson: The University of Arizona, 1973.

[5] Bauman B J. Optical design for extremely large telescope adaptive optics system[D]. Tucson: The University of Arizona, 2002.

[6] Melbur E. First-order optical design on the Tektronics 4051 graphics calculator by means of the y-y- diagram[D]. Tucson: The University of the Arizona, 1977.

[7] Zhuang S L, Zheng Q, Yu F T S. Automatic generation of prototype lenses[J]. Optics Letters, 1982, 7(12): 581-583.

[8] Zhang K Y, Yuan X Y, Cui X Q. Automatic generation of opticalinitial configuration based on Delano diagram[J]. Research in Astronomy and Astrophysics, 2016, 16(1): 59-66.

[9] 张凯元. 基于Delano图方法的光学设计及南极近红外巡天望远镜的研究[D]. 南京:中国科学院国家天文台南京天文光学技术研究所, 2016.

    Zhang K Y. The study of optical design based on Delano diagram and antarctic near infrared telescope[D]. Nanjing:Nanjing Institute of Astronomical Optics & Technology, National Astronomical Observatories, Chinese Academy of Sciences, 2016.

[10] Bentley J, Olson C. Field guide to lens design[M]. [S. l. ]: SPIE, 2012.

[11] 薛雷涛, 林峰. 800万像素超薄广角手机镜头设计[J]. 激光与光电子学进展, 2015, 52(10): 102204.

    Xue L T, Lin F. Design of thin and wide-angle lens for 8 mega-pixel mobile phone camera[J]. Laser & Optoelectronics Progress, 2015, 52(10): 102204.

[12] 杨周, 丁桂林. 基于CODE V的手机摄像镜头光学设计[J]. 激光与光电子学进展, 2013, 50(5): 051101.

    Yang Z, Ding G L. Design of mobile phone camera lens based on CODE V[J]. Laser & Optoelectronics Progress, 2013, 50(5): 051101.

[13] 邓枰湖, 林峰. 光学设计中降低公差灵敏度的方法[J]. 激光与光电子学进展, 2015, 52(11): 112202.

    Deng P H, Lin F. Method of tolerance sensitivity reduction of optical design[J]. Laser & Optoelectronics Progress, 2015, 52(11): 112202.

[14] Isshiki M, Douglas S, Seiichi K. Lens design, global optimization of both performance and tolerance sensitivity[J]. Proceedings of SPIE, 2006, 6342: 63420N.

[15] Kim J W, Ryu J M, Kim Y J. Tolerance analysis and compensation method using Zernike polynomial coefficients of omni-directional and fisheye varifocal lens[J]. Journal of the Optical Society of Korea, 2014, 18(6): 720-731.

[16] Rogers J R. Using global synthesis to find tolerance-insensitive design forms[J]. Proceedings of SPIE, 2006, 6342: 634220M-2.

[17] 李闯, 薛常喜, 杨红芳, 等. 基于Q-type非球面的电子内窥镜物镜光学系统设计[J]. 光学学报, 2017, 37(6): 062200.

    Li C, Xue C X, Yang H F, et al. Optical system design of electronic endoscope objective with Q-type aspheres[J]. Acta Optica Sinica, 2017, 37(6): 062200.

[18] 周向东, 白 剑. Q-type非球面小畸变全景环带光学系统设计[J]. 光学学报, 2015, 35(7): 0722003.

    Zhou X D, Bai J. Small distortion panoramic annular lens design with Q-type aspheres[J]. Acta Optica Sinica, 2015, 35(7): 0722003.

[19] Forbes G W. Manufacturability estimates for optical aspheres[J]. Optics Express, 2011, 19(10): 9923-9941.

[20] Ma B, Sharma K, Thompson K P, et al. Mobile device camera design with Q-type polynomials to achieve higher production yield[J]. Optics Express, 2013, 21(15): 17454-17463.

[21] Ma B, Li L, Thompson K P, et al. Applying slope constrained Q-type aspheres to develop higher performance lenses[J]. Optics Express, 2011, 19(22): 21174-21179.

戴付建, 张凯元, 李闯. 基于Delano图的手机镜头光学系统设计[J]. 激光与光电子学进展, 2018, 55(9): 092203. Dai Fujian, Zhang Kaiyuan, Li Chuang. Optical System Design for Cell Phone Camera Lens Based on Delano Diagram[J]. Laser & Optoelectronics Progress, 2018, 55(9): 092203.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!