中国激光, 2021, 48 (8): 0802018, 网络出版: 2021-04-12   

纳米操作技术研究及应用进展 下载: 1422次特邀综述

Recent Progress in Research and Application of Nano-Manipulation Technologies
王根旺 1,2管延超 1,2王扬 1,2丁烨 1,2,**杨立军 1,2,*
作者单位
1 哈尔滨工业大学微系统与微结构制造教育部重点实验室, 黑龙江 哈尔滨 150001
2 哈尔滨工业大学机电工程学院, 黑龙江 哈尔滨 150001
引用该论文

王根旺, 管延超, 王扬, 丁烨, 杨立军. 纳米操作技术研究及应用进展[J]. 中国激光, 2021, 48(8): 0802018.

Genwang Wang, Yanchao Guan, Yang Wang, Ye Ding, Lijun Yang. Recent Progress in Research and Application of Nano-Manipulation Technologies[J]. Chinese Journal of Lasers, 2021, 48(8): 0802018.

参考文献

[1] Seth S, Samanta A. Photoluminescence of zero-dimensional perovskites and perovskite-related materials[J]. The Journal of Physical Chemistry Letters, 2018, 9(1): 176-183.

[2] Gong S, Cheng W L. One-dimensional nanomaterials for soft electronics[J]. Advanced Electronic Materials, 2017, 3(3): 1600314.

[3] Cui J L, Cheng Y, Zhang J W, et al. Femtosecond laser irradiation of carbon nanotubes to metal electrodes[J]. Applied Sciences, 2019, 9(3): 476.

[4] Lu X W, Yang L J, Yang Z. Photothermal sensing of nano-devices made of graphene materials[J]. Sensors, 2020, 20(13): 3671.

[5] Wang G W, Hou C J, Long H, et al. Electronic and optoelectronic nanodevices based on two-dimensional semiconductor materials[J]. Acta Physico-Chimica Sinica, 2019, 35(12): 1319-1340.

[6] Castellanos-Gomez A, Roldán R, Cappelluti E, et al. Local strain engineering in atomically thin MoS2[J]. Nano Letters, 2013, 13(11): 5361-5366.

[7] D'Orlando A, Bayle M, Louarn G, et al. AFM-nano manipulation of plasmonic molecules used as “nano-lens” to enhance Raman of individual nano-objects[J]. Materials, 2019, 12(9): 1372.

[8] Eigler D M, Schweizer E K. Positioning single atoms with a scanning tunnelling microscope[J]. Nature, 1990, 344(6266): 524-526.

[9] Jiang C C, Lu H J, Zhang H T, et al. Recent advances on in situ SEM mechanical and electrical characterization of low-dimensional nanomaterials[J]. Scanning, 2017, 2017(8): 1985149.

[10] Ono M, Kuramochi E, Zhang G Q, et al. Nanowire-nanoantenna coupled system fabricated by nanomanipulation[J]. Optics Express, 2016, 24(8): 8647-8659.

[11] Ratchford D, Shafiei F, Kim S, et al. Manipulating coupling between a single semiconductor quantum dot and single gold nanoparticle[J]. Nano Letters, 2011, 11(3): 1049-1054.

[12] Wang H P, Shi Q, Nakajima M, et al. Rail-guided multi-robot system for 3D cellular hydrogel assembly with coordinated nanomanipulation[J]. International Journal of Advanced Robotic Systems, 2014, 11(8): 121.

[13] Shi C, Luu D K, Yang Q, et al. Recent advances in nanorobotic manipulation inside scanning electron microscopes[J]. Microsystems & Nanoengineering, 2016, 2: 16024.

[14] Xu W N, Qin Z, Chen C T, et al. Ultrathin thermoresponsive self-folding 3D graphene[J]. Science Advances, 2017, 3(10): e1701084.

[15] Schaefer D M, Reifenberger R, Patil A, et al. Fabrication of two-dimensional arrays of nanometer-size clusters with the atomic force microscope[J]. Applied Physics Letters, 1995, 66(8): 1012-1014.

[16] Junno T, Deppert K, Montelius L, et al. Controlled manipulation of nanoparticles with an atomic force microscope[J]. Applied Physics Letters, 1995, 66(26): 3627-3629.

[17] Ramachandran T R, Baur C, Bugacov A, et al. Direct and controlled manipulation of nanometer-sized particles using the non-contact atomic force microscope[J]. Nanotechnology, 1998, 9(3): 237-245.

[18] Whitman L J, Stroscio J A, Dragoset R A, et al. Manipulation of adsorbed atoms and creation of new structures on room-temperature surfaces with a scanning tunneling microscope[J]. Science, 1991, 251(4998): 1206-1210.

[19] Avouris P. Manipulation of matter at the atomic and molecular levels[J]. Accounts of Chemical Research, 1995, 28(3): 95-102.

[20] 刘炳辉. 光纤探针型近场光镊与AFM相集成的纳操作技术基础研究[D]. 哈尔滨: 哈尔滨工业大学, 2011: 7- 8.

    Liu BH. Basic research on integrated nanomanipulation using fiber probe-based near-field optical tweezers and AFM[D]. Harbin: Harbin Institute of Technology, 2011: 7- 8.

[21] Kim S, Ratchford D C, Li X Q. Atomic force microscope nanomanipulation with simultaneous visual guidance[J]. ACS Nano, 2009, 3(10): 2989-2994.

[22] Li G Y, Xi N, Yu M M, et al. Development of augmented reality system for AFM-based nanomanipulation[J]. IEEE/ASME Transactions on Mechatronics, 2004, 9(2): 358-365.

[23] Xie H, Haliyo D S, Régnier S. Parallel imaging/manipulation force microscopy[J]. Applied Physics Letters, 2009, 94(15): 153106.

[24] Xie H, Régnier S. High-efficiency automated nanomanipulation with parallel imaging/manipulation force microscopy[J]. IEEE Transactions on Nanotechnology, 2012, 11(1): 21-33.

[25] Xu K M, Kalantari A, Qian X P. Efficient AFM-based nanoparticle manipulation via sequential parallel pushing[J]. IEEE Transactions on Nanotechnology, 2012, 11(4): 666-675.

[26] Wang Z Y, Liu L Q, Wang Y C, et al. Stable nanomanipulation using atomic force microscopy: a virtual nanohand for a robotic nanomanipulation system[J]. IEEE Nanotechnology Magazine, 2013, 7(4): 6-11.

[27] Xie H, Haliyo D S, Régnier S. A versatile atomic force microscope for three-dimensional nanomanipulation and nanoassembly[J]. Nanotechnology, 2009, 20(21): 215301.

[28] Park K J, Huh J H, Jung D W, et al. Assembly of “3D” plasmonic clusters by “2D” AFM nanomanipulation of highly uniform and smooth gold nanospheres[J]. Scientific Reports, 2017, 7(1): 6045.

[29] Chen H, Zhang X L, Zhang Y Y, et al. Atomically precise, custom-design origami graphene nanostructures[J]. Science, 2019, 365(6457): 1036-1040.

[30] Vasić B, Matković A, Gajić R, et al. Wear properties of graphene edges probed by atomic force microscopy based lateral manipulation[J]. Carbon, 2016, 107: 723-732.

[31] van der Lit J, Jacobse P H, Vanmaekelbergh D, et al. Bending and buckling of narrow armchair graphene nanoribbons via STM manipulation[J]. New Journal of Physics, 2015, 17(5): 053013.

[32] Masuo S, Kanetaka K, Sato R, et al. Direct observation of multiphoton emission enhancement from a single quantum dot using AFM manipulation of a cubic gold nanoparticle[J]. ACS Photonics, 2016, 3(1): 109-116.

[33] Moreno-Moreno M, Ares P, Moreno C, et al. AFM manipulation of gold nanowires to build electrical circuits[J]. Nano Letters, 2019, 19(8): 5459-5468.

[34] Fukuda T, Arai F, Dong L. Assembly of nanodevices with carbon nanotubes through nanorobotic manipulations[J]. Proceedings of the IEEE, 2003, 91(11): 1803-1818.

[35] Fukuda T, Arai F, Dong L X. Nanorobotic systems[J]. International Journal of Advanced Robotic Systems, 2005, 2(3): 28.

[36] Shen Y J, Nakajima M, Yang Z, et al. Design and characterization of nanoknife with buffering beam for in situ single-cell cutting[J]. Nanotechnology, 2011, 22(30): 305701.

[37] Ahmad M R, Nakajima M, Kojima M, et al. Nanofork for single cells adhesion measurement via ESEM-nanomanipulator system[J]. IEEE Transactions on NanoBioscience, 2012, 11(1): 70-78.

[38] Ahmad M R, Nakajima M, Kojima S, et al. In situ single cell mechanics characterization of yeast cells using nanoneedles inside environmental SEM[J]. IEEE Transactions on Nanotechnology, 2008, 7(5): 607-616.

[39] Ahmad M R, Nakajima M, Kojima M, et al. Instantaneous and quantitative single cells viability determination using dual nanoprobe inside ESEM[J]. IEEE Transactions on Nanotechnology, 2012, 11(2): 298-306.

[40] Zimmermann S, Tiemerding T, Fatikow S. Automated robotic manipulation of individual colloidal particles using vision-based control[J]. IEEE/ASME Transactions on Mechatronics, 2015, 20(5): 2031-2038.

[41] Denisyuk A I, Komissarenko F E, Mukhin I S. Electrostatic pick-and-place micro/nanomanipulation under the electron beam[J]. Microelectronic Engineering, 2014, 121: 15-18.

[42] Yang Z, Wang Y Q, Yang B, et al. Mechatronic development and vision feedback control of a nanorobotics manipulation system inside SEM for nanodevice assembly[J]. Sensors, 2016, 16(9): 1479.

[43] Mølhave K, Wich T, Kortschack A, et al. Pick-and-place nanomanipulation using microfabricated grippers[J]. Nanotechnology, 2006, 17(10): 2434-2441.

[44] Sardan O, Eichhorn V, Petersen D H, et al. Rapid prototyping of nanotube-based devices using topology-optimized microgrippers[J]. Nanotechnology, 2008, 19(49): 495503.

[45] Rajendra K R T, Hassan S U, SardanS O, et al. Nanobits: customizable scanning probe tips[J]. Nanotechnology, 2009, 20(39): 395703.

[46] Carlson K, Andersen K N, Eichorn V, et al. A carbon nanofibre scanning probe assembled using an electrothermal microgripper[J]. Nanotechnology, 2007, 18(34): 345501-345507.

[47] Zhang Y L, Zhang Y, Ru C H, et al. A load-lock-compatible nanomanipulation system for scanning electron microscope[J]. IEEE/ASME Transactions on Mechatronics, 2013, 18(1): 230-237.

[48] Gong Z, Chen B K, Liu J, et al. Robotic probing of nanostructures inside scanning electron microscopy[J]. IEEE Transactions on Robotics, 2014, 30(3): 758-765.

[49] Eichhorn V, Fatikow S, Wich T, et al. Depth-detection methods for microgripper based CNT manipulation in a scanning electron microscope[J]. Journal of Micro-Nano Mechatronics, 2008, 4(1/2): 27-36.

[50] Zhou C, Gong Z, Chen B K, et al. A closed-loop controlled nanomanipulation system for probing nanostructures inside scanning electron microscopes[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(3): 1233-1241.

[51] Shen Y J, Nakajima M, Zhang Z H, et al. Dynamic force characterization microscopy based on integrated nanorobotic AFM and SEM system for detachment process study[J]. IEEE/ASME Transactions on Mechatronics, 2015, 20(6): 3009-3017.

[52] Fatikow S, Eichhorn V, Bartenwerfer M. Nanomaterials enter the silicon-based CMOS era: nanorobotic technologies for nanoelectronic devices[J]. IEEE Nanotechnology Magazine, 2012, 6(1): 14-18.

[53] Dong L X, Arai F, Fukuda T. Destructive constructions of nanostructures with carbon nanotubes through nanorobotic manipulation[J]. IEEE/ASME Transactions on Mechatronics, 2004, 9(2): 350-357.

[54] Zimmermann S, Tiemerding T, Li T, et al. Automated mechanical characterization of 2-D materials using SEM based visual servoing[J]. International Journal of Optomechatronics, 2013, 7(4): 283-295.

[55] Mikczinski M R, Josefsson G, Chinga-Carrasco G, et al. Nanorobotic testing to assess the stiffness properties of nanopaper[J]. IEEE Transactions on Robotics, 2014, 30(1): 115-119.

[56] Ru C H, Zhang Y, Sun Y, et al. Automated four-point probe measurement of nanowires inside a scanning electron microscope[J]. IEEE Transactions on Nanotechnology, 2011, 10(4): 674-681.

[57] Ye X T, Zhang Y, Ru C H, et al. Automated pick-place of silicon nanowires[J]. IEEE Transactions on Automation Science and Engineering, 2013, 10(3): 554-561.

[58] Shi Q, Yang Z, Guo Y N, et al. A vision-based automated manipulation system for the pick-up of carbon nanotubes[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(2): 845-854.

[59] Ding H Y, Shi C Y, Ma L, et al. Visual servoing-based nanorobotic system for automated electrical characterization of nanotubes inside SEM[J]. Sensors, 2018, 18(4): 1137.

[60] Yu N, Nakajima M, Shi Q, et al. Characterization of the resistance and force of a carbon nanotube/metal side contact by nanomanipulation[J]. Scanning, 2017, 2017: 5910734.

[61] Yu N, Shi Q, Nakajima M, et al. 3D assembly of carbon nanotubes for fabrication of field-effect transistors through nanomanipulation and electron-beam-induced deposition[J]. Journal of Micromechanics and Microengineering, 2017, 27(10): 105007.

[62] Ashkin A, Dziedzic J M, Bjorkholm J E, et al. Observation of a single-beam gradient force optical trap for dielectric particles[J]. Optics Letters, 1986, 11(5): 288-290.

[63] 李银妹, 龚雷, 李迪, 等. 光镊技术的研究现况[J]. 中国激光, 2015, 42(1): 0101001.

    Li Y M, Gong L, Li D, et al. Progress in optical tweezers technology[J]. Chinese Journal of Lasers, 2015, 42(1): 0101001.

[64] 陈忠贇, 方淦, 曹良成, 等. 飞秒激光光镊直写银微纳结构[J]. 中国激光, 2018, 45(4): 0402006.

    Chen Z Y, Fang G, Cao L C, et al. Direct writing of silver micro-nanostructures by femtosecond laser tweezer[J]. Chinese Journal of Lasers, 2018, 45(4): 0402006.

[65] 彭飞, 姚保利, 雷铭, 等. 利用光镊系统制作微型器件[J]. 中国激光, 2010, 37(5): 1245-1252.

    Peng F, Yao B L, Lei M, et al. Fabrication of micro devices by use of optical tweezers[J]. Chinese Journal of Lasers, 2010, 37(5): 1245-1252.

[66] Yan Z J, Jureller J E, Sweet J, et al. Three-dimensional optical trapping and manipulation of single silver nanowires[J]. Nano Letters, 2012, 12(10): 5155-5161.

[67] Jauffred L, Taheri S M R, Schmitt R, et al. Optical trapping of gold nanoparticles in air[J]. Nano Letters, 2015, 15(7): 4713-4719.

[68] Liu B H, Yang L J, Wang Y. Optical trapping force combining an optical fiber probe and an AFM metallic probe[J]. Optics Express, 2011, 19(4): 3703-3714.

[69] Lu X W, Yang L J, Xie H, et al. Simulations of the near-field enhancement on AFM tip irradiated by annular laser beam[J]. IEEE Transactions on Nanotechnology, 2019, 18: 979-982.

[70] Cui J L, Yang L J, Wang Y. Simulation study of near-field enhancement on a laser-irradiated AFM metal probe[J]. Laser Physics, 2013, 23(7): 076003.

[71] Ghosh S, Ghosh A. Next-generation optical nanotweezers for dynamic manipulation: from surface to bulk[J]. Langmuir, 2020, 36(21): 5691-5708.

[72] Mandal S, Serey X, Erickson D. Nanomanipulation using silicon photonic crystal resonators[J]. Nano Letters, 2010, 10(1): 99-104.

[73] Saleh A A E, Dionne J A. Toward efficient optical trapping of sub-10-nm particles with coaxial plasmonic apertures[J]. Nano Letters, 2012, 12(11): 5581-5586.

[74] Zhang W H, Huang L N, Santschi C, et al. Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas[J]. Nano Letters, 2010, 10(3): 1006-1011.

[75] Chen K Y, Lee A T, Hung C C, et al. Transport and trapping in two-dimensional nanoscale plasmonic optical lattice[J]. Nano Letters, 2013, 13(9): 4118-4122.

[76] Pang Y J, Gordon R. Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film[J]. Nano Letters, 2011, 11(9): 3763-3767.

[77] Kotnala A, Gordon R. Quantification of high-efficiency trapping of nanoparticles in a double nanohole optical tweezer[J]. Nano Letters, 2014, 14(2): 853-856.

[78] Taylor R S, Hnatovsky C. Particle trapping in 3-D using a single fiber probe with an annular light distribution[J]. Optics Express, 2003, 11(21): 2775-2782.

[79] Anastasiadi G, Leonard M, Paterson L, et al. Fabrication and characterization of machined multi-core fiber tweezers for single cell manipulation[J]. Optics Express, 2018, 26(3): 3557-3567.

[80] Liu Z H, Wang T, Zhang Y X, et al. Single fiber dual-functionality optical tweezers based on graded-index multimode fiber[J]. Chinese Optics Letters, 2018, 16(5): 053501.

[81] Berthelot J, Aćimović S S, Juan M L, et al. Three-dimensional manipulation with scanning near-field optical nanotweezers[J]. Nature Nanotechnology, 2014, 9(4): 295-299.

王根旺, 管延超, 王扬, 丁烨, 杨立军. 纳米操作技术研究及应用进展[J]. 中国激光, 2021, 48(8): 0802018. Genwang Wang, Yanchao Guan, Yang Wang, Ye Ding, Lijun Yang. Recent Progress in Research and Application of Nano-Manipulation Technologies[J]. Chinese Journal of Lasers, 2021, 48(8): 0802018.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!