光学学报, 2016, 36 (3): 0330002, 网络出版: 2016-01-25   

分数阶微分算法对盐渍土高光谱数据的影响研究

Effect of Fractional Differential Algorithm on Hyperspectral Data of Saline Soil
作者单位
1 新疆大学资源与环境科学学院, 新疆 乌鲁木齐 830046
2 新疆大学绿洲生态教育部重点实验室, 新疆 乌鲁木齐 830046
摘要
以艾比湖流域为研究区域,典型盐渍土为研究对象,引入分数阶微分,以0.2 为微分阶数间隔,将0~2 细分为11 阶微分,对原始光谱反射率及其常用的均方根、倒数等数学变换进行微分计算,结合实验室实测的土壤含盐量,从相关系数、标准差及信息熵三个角度探讨分数阶微分算法对土壤高光谱数据的影响。结果表明:随着微分阶数的增加,相关系数通过0.01显著性检验的波段数量总体上呈逐渐减少的趋势,且1 lg R 提升相关性的效果优于其他三种数学变换;高光谱数据总体分布变得相对集中,样本差异性逐渐降低;信息熵逐渐减小,信息无序度变小,有效信息量增加。分数阶微分能够细化相关系数、标准差及信息熵的变化趋势,丰富高光谱数据的预处理方法,可从光谱维的角度深层挖掘光谱信息,为深度利用高光谱数据提供崭新的视角,同时也可为特征波段选择、地表参数反演等高光谱数据的应用提供参考依据。
Abstract
The Ebinur Lake Basin is selected as the studied area, and typical saline soil is chosen as the research object. By introducing fractional differential algorithm, setting 0.2 as the order interval and dividing 0~2 into 11 orders, the differentials of the raw spectral reflectance and its four mathematical transformations are calculated. Combining with the soil salt content measured in laboratory, the effect of fractional differential algorithm on soil hyperspectral data is explored from the perspective of correlation coefficient, standard deviation and information entropy, respectively. The results show that with the increase of the differential order, the number of bands whose correlation coefficient passes the 0.01 level of the significance test follows a decreasing trend and the 1 lg R transformation has better capacity to enhance the correlation coefficient than the other three mathematical transformations; the overall distribution of hyperspectral data becomes relatively concentrated and the difference among soil samples is gradually reduced; the total information entropy decreases, the disorder degree of the information becomes smaller and the amount of valid information increases. Fractional differential can detail the varying trend of correlation coefficient, standard deviation and information entropy, enrich the methods of hyperspectral data pre-processing, delve into spectral information based on the spectral dimension, provide a new perspective on the deep exploitation of hyperspectral data, and offer a reference for various applications of hyperspectral data, such as characteristic band selection and quantitative inversion of land surface parameters.
参考文献

[1] 吴一全, 周杨, 龙云淋. 基于自适应参数支持向量机的高光谱遥感图像小目标检测[J]. 光学学报,2015, 35(9): 0928001.

    Wu Yiquan, Zhou Yang, Long Yunlin. Small target detection in hyperspectral remote sensing image based on adaptive parameter SVM [J]. Acta Optica Sinica, 2015, 35(9): 0928001.

[2] 杨桂燕, 李路, 陈和, 等. 基于广义Whittaker平滑器的拉曼光谱基线校正方法[J]. 中国激光,2015, 42(9): 0915003.

    Yang Guiyan, Li Lu, Chen He, et al.. Baseline correction method for Raman spectra based on generalized Whittaker smoother[J]. Chinese J Lasers, 2015, 42(9): 0915003.

[3] Ben-Dor E, Inbar Y, Chen Y. The reflectance spectra of organic matter in the visible near-infrared and short wave infrared region (400- 2500 nm) during a controlled decomposition process[J]. Remote Sensing of Environment, 1997, 61(1): 1-15.

[4] 史同璐, 刘建军, 洪治. 基于光子混频的可调谐连续太赫兹波辐射系统[J]. 中国激光, 2014, 41(4): 0411001.

    Shi Tonglu, Liu Jianjun, Hong Zhi. Tunable continuous-wave terahertz radiation system based on photomixing[J]. Chinese J Lasers, 2014, 41(4): 0411001.

[5] Holden H, LeDrew E. Spectral discrimination of healthy and non-healthy corals based on cluster analysis, principal components analysis, and derivative spectroscopy[J]. Remote Sensing of Environment, 1998, 65(2): 217-224.

[6] Tsai F, Philpot W. Derivative analysis of hyperspectral data[J]. Remote Sensing of Environment, 1998, 66(1): 41-51.

[7] 雷磊, 塔西甫拉提 特依拜, 丁建丽, 等. 实测高光谱和HSI影像的区域土壤盐渍化遥感监测研究[J]. 光谱学与光谱分析, 2014, 34(7): 1948-1953.

    Lei Lei, Tashpolat Tiyip, Ding Jianli, et al.. Study on the soil salinization monitoring based on measured hyperspectral and HSI data[J]. Spectroscopy and Spectral Analysis, 2014, 34(7): 1948-1953.

[8] Mashimbye Z E, Cho M A, Nell J P, et al.. Model-based integrated methods for quantitative estimation of soil salinity from hyperspectral remote sensing data: A case study of selected South African soils[J]. Pedosphere, 2012, 22(5): 640-649.

[9] 彭杰, 刘焕军, 史舟, 等. 盐渍化土壤光谱特征的区域异质性及盐分反演[J]. 农业工程学报, 2014, 30(17): 167-174.

    Peng Jie, Liu Huanjun, Shi Zhou, et al.. Regional heterogeneity of hyperspectral characteristics of salt-affected soil and salinity inversion [J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(17): 167-174.

[10] 徐继刚, 冯新泸, 管亮, 等. 分数阶微分在红外光谱数据预处理中的应用[J]. 化工自动化及仪表, 2012, 39(3): 347-351.

    Xu Jigang, Feng Xinlu, Guan Liang, et al.. Fractional differential application in preprocessing infrared spectral data[J]. Control and Instruments in Chemical Industry, 2012, 39(3): 347-351.

[11] Tarasov V E. On chain rule for fractional derivatives[J]. Communications in Nonlinear Science and Numerical Simulation, 2016, 30(1): 1-4.

[12] Baderia K, Kumar A, Singh G K. Hybrid method for designing digital FIR filters based on fractional derivative constraints[J]. ISA Transactions, 2015, 58: 493-508.

[13] 张静静, 江月松, 何云涛, 等. 分数域滤波的分数傅里叶变换光学成像性能分析[J]. 光学学报, 2011, 31(11): 1111003.

    Zhang Jingjing, Jiang Yuesong, He Yuntao, et al.. Performance analysis of fractional Fourier transform optical imaging based on fractional Fourier-domain filtering[J]. Acta Optica Sinica, 2011, 31(11): 1111003.

[14] Xu S, Hu L Y, Huang J H. New fractional entangling transform and its quantum mechanical correspondence[J]. Chinese Optics Letters, 2015, 13(3): 030801.

[15] Lu D, Jin W M. Fully phase color image encryption based on joint fractional Fourier transform correlator and phase retrieval algorithm [J]. Chinese Optics Letters, 2011, 9(2): 021002.

[16] 白晶. 分数阶模型的离散化方法研究[D]. 大连: 大连交通大学, 2009: 12-13.

    Bai Jing. Research on Discretization Methods of Fractional Order Model[D]. Dalian: Dalian Jiaotong University, 2009: 12-13.

[17] Bhrawy A H, Taha T M, Machado J A T. A review of operational matrices and spectral techniques for fractional calculus[J]. Nonlinear Dynamics, 2015, 81(3): 1023-1052.

[18] Liang J, Shi Z, Li D, et al.. Information entropy, rough entropy and knowledge granulation in incomplete information systems[J]. International Journal of General Systems, 2006, 35(6): 641-654.

[19] Dincer I, Cengel Y A. Energy, entropy and exergy concepts and their roles in thermal engineering[J]. Entropy, 2001, 3(3): 116-149.

[20] Roulston M S. Estimating the errors on measured entropy and mutual information[J]. Physica D: Nonlinear Phenomena, 1999, 125(3): 285-294.

[21] 杨可明, 刘士文, 王林伟, 等. 光谱最小信息熵的高光谱影像端元提取算法[J]. 光谱学与光谱分析, 2014, 34(8): 2229-2233.

    Yang Keming, Liu Shiwen, Wang Linwei, et al.. An algorithm of spectral minimum Shannon entropy on extracting endmember of hyperspectral image[J]. Spectroscopy and Spectral Analysis, 2014, 34(8): 2229-2233.

[22] 艾廷华, 何亚坤, 杜欣. GIS数据尺度变换中的信息熵变化[J]. 地理与地理信息科学, 2015, 31(2): 7-11.

    Ai Tinghua, He Yakun, Du Xin. Information entropy change in GIS data scale transformation[J]. Geography and Geo-Information Science, 2015, 31(2): 7-11.

[23] 袁正午, 贾媚媚. 一种改进的射线跟踪定位算法[J]. 计算机应用研究, 2012, 29(6): 2129-2131.

    Yuan Zhengwu, Jia Meimei. Improved positioning algorithm based on ray-tracing[J]. Application Research of Computers, 2012, 29(6): 2129-2131.

[24] Liu D, Abuduwaili J, Lei J, et al.. Wind erosion of saline playa sediments and its ecological effects in Ebinur Lake, Xinjiang, China[J]. Environmental Earth Sciences, 2011, 63(2): 241-250.

[25] Zhang F, Tiyip T, Johnson V C, et al.. The influence of natural and human factors in the shrinking of the Ebinur Lake, Xinjiang, China, during the 1972–2013 period[J]. Environmental Monitoring and Assessment, 2015, 187(1): 1-14.

[26] 阿尔达克 克里木, 塔西甫拉提 特依拜, 张飞, 等. 基于热红外发射率光谱的土壤盐分预测模型的建立与验证[J]. 农业工程学报, 2015, 31(17): 115-120.

    Ardak Kelimu, Tashpolat Tiyip, Zhang Fei, et al.. Prediction model saline of soil and its validation based on thermal infrared emissivity spectrum[J]. Transactions of the Chinese Society Agricultural Engineering, 2015, 31(17): 115-120.

[27] 刘蕾.新疆土壤盐分的组成和分布特征[J].干旱环境监测,2009, 23(4): 227-229.

    Liu Lei. Constitute and distributing character of salinity in soil in Xinjiang[J]. Arid Environmental Monitoring, 2009, 23(4): 227-229.

[28] 周清, 周斌, 张杨珠, 等. 成土母质对水稻土高光谱特性及其有机质含量光谱参数模型影响的初步研究[J]. 土壤学报, 2004, 41(6): 905-911.

    Zhou Qing, Zhou Bin, Zhang Yangzhu, et al.. Influence of parent materials on paddy soil hyperspectral characteristics and SOM spectralparameter- models[J]. Acta Pedologica Sinica, 2004, 41(6): 905-911.

[29] 于雷, 洪永胜, 耿雷, 等. 基于偏最小二乘回归的土壤有机质含量高光谱估算[J]. 农业工程学报, 2015, 31(14): 103-109.

    Yu Lei, Hong Yongsheng, Geng Lei, et al.. Hyperspectral estimation of soil organic matter content based on partial least squares regression [J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(14): 103-109.

[30] 王乾龙, 李硕, 卢艳丽, 等. 基于大样本土壤光谱数据库的氮含量反演[J]. 光学学报, 2014, 34(9): 0930003.

    Wang Qianlong, Li Shuo, Lu Yanli, et al.. Nitrogen content inversion based on large sample soil spectral library[J]. Acta Optica Sinica, 2014, 34(9): 0930003.

[31] Schmitt J M. Fractional derivative analysis of diffuse reflectance spectra[J]. Applied Spectroscopy, 1998, 52(6): 840-846.

张东, 塔西甫拉提·特依拜, 张飞, 阿尔达克·克里木, 夏楠. 分数阶微分算法对盐渍土高光谱数据的影响研究[J]. 光学学报, 2016, 36(3): 0330002. Zhang Dong, Tashpolat·Tiyip, Zhang Fei, Ardak·Kelimu, Xia Nan. Effect of Fractional Differential Algorithm on Hyperspectral Data of Saline Soil[J]. Acta Optica Sinica, 2016, 36(3): 0330002.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!