光学学报, 2015, 35 (s1): s101001, 网络出版: 2015-07-27   

相干多普勒激光雷达观测渤黄海海洋大气边界层高度研究

Coherent Doppler Lidar Observations of Marine Atmospheric Boundary Layer Height in the Bohai and Yellow Sea
作者单位
中国海洋大学信息科学与工程学院, 山东 青岛 266100
摘要
2014年4月27日至2014年5月19日在“国家自然科学基金委2014年渤黄海共享航次春季航次”中,中国海洋大学利用自行研制的相干多普勒激光雷达在渤黄海32oN~40oN,118.5oE~125.3oE区域内观测海上大气边界层结构。相干多普勒激光雷达垂直指向发射激光和接收回波时,利用不同高度距离库内快速傅里叶变换谱的峰值计算了信号的信噪比,基于梯度法从信噪比廓线数据反演和提取大气边界层高度。该结果与同步的探空仪数据、Vaisala商业化的CL31型云高仪边界层高度进行对比,相干多普勒激光雷达结果与探空仪位温数据提取结果的相关性为79%,标准差为610 m;相干多普勒激光雷达与探空仪相对湿度数据提取结果的相关性为90%,标准差为370 m;相干多普勒激光雷达与云高仪获取结果的相关性为94%,标准差为320 m。
Abstract
During the National Natural Science Foundation of China open cruise of the R/V Dongfanghong-2 (NSFC 41349901), coherent Doppler lidar developed by Ocean University of China is used to observe atmospheric boundary layer structure in the Bohai and Yellow Sea. Lidar measurement is operated in the region between 32oN~40oN and 118.5oE~125.3oE, from April 27 to May 19, 2014. Lidar transmits the laser pulse to the atmosphere and receives its backscattering echo signals. Signal to noise ratio is calculated for each range bin of fast Fourier transform spectrum. The marine atmospheric boundary layer height is retrieved according to the minimum of gradient of signal to noise ratio profile. Comparisons between coherent Doppler lidar retrieval and synchronous radiosonde profiling, Vaisala CL31 laser ceilometer data show a good agreement between each other. Correlation of lidar results with radiosonde potentail temperature data is 79% with a standard deviation of 610 m. Correlation of lidar and radiosonde relative humidity data is 90% with a standard deviation of 370 m. And the correlation of lidar and ceilometer data is 94% with a standard deviation of 320 m.
参考文献

[1] 万凯. 卫星SAR图像的海洋大气边界层特征参数的反演[J]. 海洋科学发展,2005,23(3): 322-327.

    Wan Kai. The Marine atmospheric boundary layer characteristic parameters of satellite SAR images inversion[J]. Marine Science Development,2005, 23(3): 322-327.

[2] K E Kunkel, E W Eloranta, S T Shipley. Lidar observations of the convective boundary layer[J]. J Appl Meteorol, 1977, 16(12): 1306-1311.

[3] R B Stull. An Introduction to Boundary Layer Meteorology[M]. Dordrecht: Kluwer Academic, 1988: 2-16.

[4] 袁林,刘博,王邦新,等. 车载式1064 nm米氏散射激光雷达的研制[J]. 中国激光,2010,37(7): 1721-1725.

    Yuan Lin,Liu Bo,Wang Bangxin, et al.. Design of mobile 1064 nm Mie scattering lidar[J] . Chinese J Lasers,2010,37(7): 1721-1725.

[5] 伯广宇,刘东,王邦新,等. 探测云和气溶胶的机载双波长偏振激光雷达[J]. 中国激光,2012,39(10): 1014002.

    Bo Guangyu,Liu Dong,Wang Bangxin, et al.. Two-wavelength polarization airborne lidar for observation of aerosol and cloud[J]. Chinese J Lasers,2012,39(10): 1014002.

[6] 陶宗明,吴德成,刘东,等. 激光雷达反演气溶胶后向散射系数误差估算[J]. 中国激光,2011,38(12): 1214001.

    Tao Zongming,Wu Decheng,Liu Dong, et al.. Estimation of aerosol backscatter coefficient error in lidar data processing[J]. Chinese J Lasers,2011,38(12):1214001.

[7] 谢晨波,周军,岳古明,等. 新型车载拉曼激光雷达测量对流层水汽[J]. 光学学报,2006,26(9): 1281-1286.

    Xie Chenbo,Zhou Jun,Yue Guming, et al.. New mobile Raman lidar for measurement of tropospheric water vapor[J]. Acta Optica Sinica,2006,26(9): 1281-1286.

[8] S H Melfi,J D Spinhirne,S H Chou, et al.. Lidar observations of vertically organized convection in the planetary boundary layer over the ocean[J]. Climate Appl Meteorol,1985,24(8): 806-821.

[9] K J Davis,D H Lenschow,S P Oncley, et al.. Role of entrainment in surface-atmosphere interactions over a boreal forest[J]. J Geophys Res,1997,102(D24): 29219-29230.

[10] M Ian Brooks. Finding boundary layer top:application of a wavelet covariance transform to lidar backscatter profiles[J]. J Atmos Oceanic Technol,2003,20(8): 1092-1105.

[11] G Martucci,R Matthey,V Mitev, et al.. Comparison between backscatter lidar and radiosonde measurements of the diurnal and nocturnal stratification in the lower troposphere[J]. J Atmos Oceanic Technol,2007,24(7): 1231-1244.

[12] C Flamant,J Pelon,P H Flamant, et al.. Lidar determination of the entrainment zone thickness at the top of the unstable marine atmospheric boundary layer[J]. Boundary Layer Meteorol,1997,83(2): 247-284.

[13] A B White,C J Senff, R M Bant, et al.. A comparison of mixing depths observed by ground-based wind profilers and an airborne lidar[J]. J Atmos Oceanic Technol,1999,16(5): 584-590.

[14] B Hennemuth, A Lammert. Determination of the atmospheric boundary layer height from radiosonde and lidar backscatter[J]. Bound Layer Meteorol,2005,120(1): 181-200.

[15] A Lammert, J Bosenberg. Determination of the convective boundary-layer height with laser remote sensing[J]. Bound Layer Meteorol,2006,199(1): 159-170.

[16] S Kameyama,T Ando,K Asaka, et al.. Compact all-fiber pulsed coherent Doppler lidar system for wind sensing[J]. Appl Opt,2007,46(11): 1953-1962.

[17] 王希涛,刘智深. 全光纤激光相干测速技术研究[D]. 青岛: 中国海洋大学,2011: 38-43.

    Wang Xitao,Liu Zhishen. The Research of All-Fiber Laser Heterodyne Detection for Velocity Measurement[D]. Qingdao: Ocean University of China,2011: 38-43.

[18] Y Bhavani Kumar,S Purusotham. Mathematical algorithms for determination of mixed layer height from laser radar signals [J]. International Journal on Computer Science and Engineering,2010,2(6): 2059-2063.

[19] J P Cariou,L Sauvage,S Lolli, et al.. Planetary boundary layer dynamic measurements with new compact long range wind Lidar WindcubeTM WLS70[C]. Fourth Symposium on Lidar Atmospheric Applications,89th American Meteorological Society Annual Meeting,2009.

[20] Y Sasano,H Shimizu,N Sugimoto, et al.. Diurnal variation of the atmospheric boundary layer observed by a computer controlled laser radar[J]. Meteorological Society of Japan,1980,58: 143-148.

[21] 盛裴轩,毛节泰,李建国,等. 大气物理学[M]. 北京: 北京大学出版社,2003: 134-135.

    Sheng Peixuan,Mao Jietai,Li Jianguo,et al.. Atmospheric Physics [M]. Beijing: Peking University Press,2003:134-135.

[22] J R Garratt. The Atmospheric Boundary Layer[M]. Cambridge:Cambridge University Press,1992:335.

[23] T R Oke. Boundary Layer Climates[M]. New York:Halsted Press, 1988:435.

[24] Z Sorbjan. Structure of the Atmospheric Boundary Layer[M]. Upper Saddle River: Prentice Hall,1989:317.

[25] D J Seidel,C O Ao,K Li, et al.. Estimating climatological planetary boundary layer heights from radiosonde observations: comparison of methods and uncertainty analysis[J]. J Geophys Res,2010,115(D16): D16113.

王东祥, 宋小全, 冯长中, 王希涛, 吴松华. 相干多普勒激光雷达观测渤黄海海洋大气边界层高度研究[J]. 光学学报, 2015, 35(s1): s101001. Wang Dongxiang, Song Xiaoquan, Feng Changzhong, Wang Xitao, Wu Songhua. Coherent Doppler Lidar Observations of Marine Atmospheric Boundary Layer Height in the Bohai and Yellow Sea[J]. Acta Optica Sinica, 2015, 35(s1): s101001.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!