光电工程, 2020, 47 (4): 180671, 网络出版: 2020-05-27  

基于光学互易回路的全光纤电流互感器的研究与应用

Research and application of all-fiber optic current transformer based on optical reciprocity loop
作者单位
1 常州博瑞电力自动化设备有限公司,江苏 常州 213025
2 南京南瑞继保电气有限公司,江苏 南京 211100
摘要
针对传统有源电磁式互感器易饱和、稳定性与抗干扰能力差、安装受限等问题,本文基于Faraday磁光效应,设计了一种无源全光纤电流互感器,通过旋光角来测量被测电流;设计互感器以HB Spun光纤作为传感元件,无饱和现象,可用于大电流测量;利用光学互易回路,消除光路中温度、光纤缺陷等因素对旋光角测量的干扰;采用反射式光路将电场引起的旋光角放大4倍,实现小电流的精确测量;传感元件采用柔性传感光纤环结构,形状可变,适应复杂空间内电流的测量。对比了不同圈数的柔性光纤传感环与标准电流互感器的测量精度,结果表明,本文设计的光学互易回路可以消除温度对电流测量的影响,全光纤电流互感器在-5 ℃~70 ℃全温度范围内精度为0.5,可实现小电流的精确测量。
Abstract
Aiming to the problems of traditional active electromagnetic transformer such as easy magnetic saturation, poor stability and anti-interference ability, and limited installation, etc., this paper designs the optical fiber current transformer to measure current by rotation angle based on Faraday magneto-optic effect; HB Spun optical fiber is used as sensing element without saturation and can be used for high current measurement. The designed transformer uses the optical reciprocity loop to eliminate the interference of temperature and optical fiber defect on the measurement of optical rotation angle, and uses reflector to enlarge the optical rotation angle to four times, which can realize accurate measurement of small current; Sensing element uses flexible fiber ring with shape variability characteristic, which helps for measurement of current in complex space. The paper compares flexible fiber ring with different loops to standard current transformer, the results show that optical reciprocity loop can eliminate the interference of temperature on the current measurement and the accuracy of all-fiber current transformer is 0.5 in the range of -5 ℃~70 ℃, which can realize the accurate measurement of small current.
参考文献

[1] 王谦, 陆宇航, 刘勇, 等. 光学互感器在智能变电站的应用现状与发展前景[J]. 电力系统及其自动化学报, 2016, 28(12): 89–95.

    Wang Q, Lu Y H, Liu Y, et al. Application status and development prospect of optical transformer in smart substation[J]. Proceedings of the CSU-EPSA, 2016, 28(12): 89–95.

[2] 肖智宏. 电力系统中光学互感器的研究与评述[J]. 电力系统保护与控制, 2014, 42(12): 148–154.

    Xiao Z H. Study and comment of the optical transformers in power system[J]. Power System Protection and Control, 2014, 42(12): 148–154.

[3] 赵俊, 许立国, 须雷. 基于保偏光纤温度传感器的全光纤电流互感器[J]. 电力电子技术, 2016, 50(10): 70–72.

    Zhao J, Xu L G, Xu L. A polarization maintaining fiber temperature sensor based on all fiber optic current transducer[J]. Power Electronics, 2016, 50(10): 70–72.

[4] 王志, 初凤红, 吴建平. 全光纤电流传感器温度补偿研究进展[J]. 激光与光电子学进展, 2014, 51(12): 120005.

    Wang Z, Chu F H, Wu J P. Progress in all-fiber current sensor temperature compensation[J]. Laser & Optoelectronics Progress, 2014, 51(12): 120005.

[5] 王晓琪, 汪本进, 程虎. 光纤电流互感器中传感光纤的椭圆双折射测量[J]. 光学与光电技术, 2015, 13(2): 43–47.

    Wang X Q, Wang B J, Cheng H. Measurement of the elliptical birefringence inside the sensing fiber of an all-fiber optical current transducer[J]. Optics & Optoelectronic Technology, 2015, 13(2): 43–47.

[6] 童维军, 杨晨, 刘彤庆, 等. 光纤传感用新型特种光纤的研究进展与展望[J]. 光电工程, 2018, 45(9): 180243.

    Tong W J, Yang C, Liu T Q, et al. Progress and prospect of novel specialty fibers for fiber optic sensing[J]. Opto-Electronic Engineering, 2018, 45(9): 180243.

[7] 王景飞, 梁京伟, 董前民. 反射式Sagnac干涉光纤电流互感器的传感头误差研究[J]. 光学与光电技术, 2011, 9(10): 23–26.

    Wang J F, Liang J W, Dong Q M. Study of sensing coil errors in the in-line Sagnac interferometer current transducer[J]. Optics & Optoelectronic Technology, 2011, 9(10): 23–26.

[8] 姜中英, 张春熹, 徐宏杰, 等. 线性双折射对光纤电流互感器影响的研究[J]. 光学技术, 2006, 32(S1): 218–220, 223.

    Jiang Z Y, Zhang C X, Xu H J, et al. Study of fiber optic current transducer error due to linear birefringence[J]. Optical Technique, 2006, 32(S1): 218–220, 223.

[9] 王红星, 关远鹏, 胡春潮, 等. 全光纤电流互感器温度误差研究[J]. 电力自动化设备, 2017, 37(12): 200–204.

    Wang H X, Guan Y P, Hu C C, et al. Temperature error of fiber optic current transformer[J]. Electric Power Automation Equipment, 2017, 37(12): 200–204.

[10] 阎嫦玲, 王耀, 罗苏南, 等. 用于发电机保护的柔性全光纤电流互感器[J]. 电力自动化设备, 2017, 37(4): 191–196.

    Yan C L, Wang Y, Luo S N, et al. FFOCT for generator protection[J]. Electric Power Automation Equipment, 2017, 37(4): 191–196.

[11] 尹士玉, 张世昌, 吴甜. 全光纤电流互感器温度误差分析与温度误差补偿[J]. 电测与仪表, 2017, 54(7): 16–21.

    Yin S Y, Zhang S C, Wu T. Temperature error analysis and temperature error compensation of the all fiber optic current transformer[J]. Electrical Measurement & Instrumentation, 2017, 54(7): 16–21.

[12] 肖浩, 刘博阳, 湾世伟, 等. 全光纤电流互感器的温度误差补偿技术[J]. 电力系统自动化, 2011, 35(21): 91–95.

    Xiao H, Liu B Y, Wan S W, et al. Temperature error compensation technology of all-fiber optical current transformers[J]. Automation of Electric Power Systems, 2011, 35(21): 91–95.

[13] 罗苏南, 曹冬明, 王耀, 等. ±800kV特高压直流全光纤电流互感器研制及应用研究[J]. 高压电器, 2016, 52(10): 1–7.

    Luo S N, Cao D M, Wang Y, et al. Development and application research of ±800 kV UHVDC fiber optical current transducer[J]. High Voltage Apparatus, 2016, 52(10): 1–7.

郝兆荣, 王强, 达建朴, 罗苏南, 王耀, 张广泰, 李钊. 基于光学互易回路的全光纤电流互感器的研究与应用[J]. 光电工程, 2020, 47(4): 180671. Hao Zhaorong, Wang Qiang, Da Jianpu, Luo Sunan, Wang Yao, Zhang Guangtai, Li Zhao. Research and application of all-fiber optic current transformer based on optical reciprocity loop[J]. Opto-Electronic Engineering, 2020, 47(4): 180671.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!