中国激光, 2015, 42 (12): 1213002, 网络出版: 2015-12-08   

艾里涡旋光束在大气湍流中的漂移特性研究

Study of the Drift Characteristics of Airy Vortex Beam in Atmospheric Turbulence
作者单位
空军工程大学, 陕西 西安 710000
摘要
采用多层相位屏法模拟了艾里涡旋光束在大气湍流中的漂移特性。讨论了拓扑电荷p、涡旋核相对于光束中心的离轴距离xd,yd 和湍流强度C2n 对艾里涡旋光束在不同传输距离处的漂移特性的影响。研究发现,在相同传输距离处,漂移量随着C2n 的增大而增大。在传输距离比较小时,p 和xd,yd对漂移的影响比较弱,漂移量几乎相等。当传输距离比较大时,漂移量随p 的增大而减小,随xd,yd的增大而增大。此外比较了单束艾里涡旋光束的漂移量和阵列艾里涡旋光束的漂移量,研究发现,阵列艾里涡旋光束的漂移量比较小。
Abstract
The drift characteristics of Airy vortex beam in atmospheric turbulence are simulated based on multiple phase screens method. The drift characteristics influenced by topological charge p, the off-axis dislocations xd, yd of the vortices core from the optical center and the intensity of turbulence C2n are investigated in different distances. It is shown that the drifts increase with the increase of C2n in the same distance. When the distances are short, the drifts are nearly equal because of the weak influence of p and xd, yd. When the distances are long enough, the drifts decrease with the increase of p, but increase with the increase of xd, yd. In addition, by comparing the drifts of single Airy vortex beam with the Airy vortex array beams, it is shown that the drifts of Airy vortex array beams are smaller.
参考文献

[1] Berry M V, Balazs N L. Nonspreading wave packets[J]. Am J Phys, 1979, 47(3): 264-267.

[2] 程振, 赵尚弘, 楚兴春, 等. 艾里光束产生方法的研究进展[J]. 激光与光电子学进展, 2015, 52(3): 030008.

    Cheng Zhen, Zhao Shanghong, Chu Xingchun, et al.. Research progress of the generation methods of Airy beam[J]. Laser & Optoelectronics Progress, 2015, 52(3): 030008.

[3] Dai H T, Sun X W, Luo D, et al.. Airy beams generated by a binary phase element made of polymer- dispersed liquid crystals[J]. Opt Express, 2009, 17(22): 19365.

[4] Yi Hu, Peng Zhang, Cibo Lou, et al.. Optimal control of the ballisticmotion of Airy beams[J]. Opt Lett, 2010, 35(13): 2260-2262.

[5] 程振, 楚兴春, 赵尚弘, 等. 艾里光束控制传输轨迹方法的研究进展[J]. 激光与光电子学进展, 2015, 52(6): 060002.

    Cheng Zhen, Chu Xingchun, Zhao Shanghong, et al.. Research progress of Airy beam′s propagation trajectory control[J]. Laser & Optoelectronics Progress, 2015, 52(6): 060002.

[6] 程化, 臧维平, 田建国. 艾里光束对微小颗粒的捕获和输运研究[J]. 光学学报, 2011, 31(s1): s100405.

    Cheng Hua, Zang Weiping, Tian Jianguo. Study on optical trapping and propulsion of small particles by Airy beam[J]. Acta Optica Sinica, 2011, 31(s1): s100405.

[7] Abdollahpour D, Suntsov S, Papazoglou D, et al.. Spatiotemporal Airy light bullets in the linear and nonlinear regimes[J]. Phys Rev Lett, 2010, 105(25): 253901.

[8] Polynkin P, Kolesik M, Moloney J V, et al.. Curved plasma channel generation using ultraintense Airy beams[J]. Science, 2009, 324(5924): 229-232.

[9] Gu Y, Gbur G. Scintillation of Airy beam arrays in atmospheric turbulence[J]. Opt Lett, 2010, 35(20): 3456-3458.

[10] Tao Rumao, Si Lei, Ma Yanxing, et al.. Average spreading of finite energy Airy beams in non-Kolmogorov turbulence[J]. Opt Laser Eng, 2013, 51(4): 488-492.

[11] 王晓章, 李琪, 钟文, 等. 液晶空间光调制器模拟艾里光束在湍流中的漂移[J]. 中国激光, 2013, 40(12): 1213001.

    Wang Xiaozhang, Li Qi, Zhong Wen, et al.. Drift behavior of Airy beams in turbulence simulated by using a liquid crystal spatial light modulator[J]. Chinese J Lasers, 2013, 40(12): 1213001.

[12] Cullet P, Gill L, Rocca F. Optical vortices[J]. Opt Commun, 1989, 73(5): 403-408.

[13] Simpson N B, Allen L, Padgett M J. Optical tweezers and optical spanners with Laguerre- Gaussian modes[J]. J Mod Opt, 1996, 43(12): 2485-2491.

[14] Simpson N B, Dholakia K, Allen L, et al.. Mechanical equivalence of spin and orbital angular momentum of light: An optical spanner[J]. Opt Lett, 1997, 22(1): 52-54.

[15] 王海燕, 陈川琳, 杜家磊. 贝塞尔高斯涡旋光束在大气中传输特性[J]. 光子学报, 2013, 42(5): 505-510.

    Wang Haiyan, Chen Chuanlin, Du Jialei. Propagation of Bessel-Gaussian beam with vortices in turbulence atmosphere[J]. Acta Photonic Sinica, 2013, 42(5): 505-510.

[16] Dai H T, Liu Y J, Luo D, et al.. Propagation dynamics of an optical vortex imposed on Airy beam[J]. Opt Lett, 2010, 35(23): 4075-4077.

[17] Dai H T, Liu Y J, Luo D, et al.. Propagation dynamics of an optical vortex carried by an Airy beam: Experimental implementation[J]. Opt Lett, 2011, 36(9): 1617-1619.

[18] Deng Dongmei, Chen Chidao, Zhao Xin. Propagation of an Airy vortex beam in uniaxial crystals[J]. Appl Phys B, 2013, 110(3): 433-436.

[19] Chen Ruipin, Chew Khian-Hool. Far-field properties of a vortex Airy beam[J]. Laser Part Beams, 2013, 31(1): 9-15.

[20] Andrews L C, Phillips R L. Laser Beam Propagation through Random Media (2nd Edition)[M]. Bellingham: SPIE Press, 2005.

[21] Peleg A, Moloney J V. Scintillation reduction by use of multiple Guassian laser beams with different wavelengths[J]. IEEE Photon Technol Lett, 2007, 19(12): 883-889.

[22] Johansson E M, Gavel D T. Simulation of stellar speckle imaging[C]. SPIE, 1994, 2200: 372-383.

[23] 周朴, 刘泽金, 许晓军, 等. 自适应锁相光纤激光阵列的湍流大气传输性能[J]. 中国激光, 2009, 36(6): 1442-1447.

    Zhou Pu, Liu Zejin, Xu Xiaojun, et al.. Propagation performance of adaptive phase-locked fiber laser array in turbulent atmosphere[J]. Chinese J Lasers, 2009, 36(6): 1442-1447.

[24] 王奇涛, 佟首峰, 徐友会. 采用Zernike多项式对大气湍流相位屏的仿真和验证[J]. 红外与激光工程, 2013, 42(7): 1907-1911.

    Wang Qitao, Tong Shoufeng, Xu Youhui. On simulation and verification of the atmospheric turbulent phase screen with Zernike polynomials [J]. Infrared and Laser Engineering, 2013, 42(7): 1907-1911.

[25] Yan H X. Numerical simulation of an adaptive optics system with laser propagation in the atmosphere[J]. Appl Opt, 2000, 39(18): 3023- 3031.

[26] Lane R G, Glindemann A, Dainty J C. Simulation of a Kolmogorov phase screen[J]. Waves in Random Media, 1992, 2(3): 209-224.

[27] 蔡冬梅, 王昆, 贾鹏, 等. 功率谱反演大气湍流随机相位屏采样方法的研究[J]. 物理学报, 2014, 63(10): 140217.

    Cai Dongmei, Wang Kun, Jia Peng, et al.. Sampling methods of power spectral density method simulating atmospheric turbulence phase sceen[J]. Acta Physica Sinica, 2014, 63(10): 140217.

[28] 王立瑾, 李强, 魏宏刚. 大气湍流随机相位屏的数值模拟和验证[J]. 光电工程, 2007, 34(3): 1-4.

    Wang Lijin, Li Qiang, Wei Honggang. Numerical simulation and validation of phase screen distorted by atmospheric turbulence[J]. Opto- Electronic Engineering, 2007, 34(3): 1-4.

[29] 季小玲. 大气湍流对径向分布高斯阵列光束扩展和方向性的影响[J]. 物理学报, 2010, 59(1): 692-697.

    Ji Xiaoling. Influence of atmospheric turbulence on the spreading and directionality of radial Guassian array beams[J]. Acta Physica Sinica, 2010, 59(1): 692-697.

[30] 吴武明, 宁禹, 任亚杰, 等. 阵列光束在湍流大气中传输的光强闪烁研究进展[J]. 激光与光电子学进展, 2012, 49(7): 070008.

    Wu Wuming, Ni Yu, Ren Yajie, et al.. Research progress of scintillations for laser array beams in atmospheric turbulence[J]. Laser & Optoelectronics Progress, 2012, 49(7): 070008.

程振, 楚兴春, 赵尚弘, 邓博于, 张曦文. 艾里涡旋光束在大气湍流中的漂移特性研究[J]. 中国激光, 2015, 42(12): 1213002. Cheng Zhen, Chu Xingchun, Zhao Shanghong, Deng Boyu, Zhang Xiwen. Study of the Drift Characteristics of Airy Vortex Beam in Atmospheric Turbulence[J]. Chinese Journal of Lasers, 2015, 42(12): 1213002.

本文已被 10 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!