Photonics Research, 2018, 6 (9): 09000847, Published Online: Aug. 15, 2018   

Enhancing plasmonic trapping with a perfect radially polarized beam Download: 676次

Author Affiliations
1 Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology, Shenzhen University, Shenzhen 518060, China
2 e-mail: cjmin@szu.edu.cn
3 e-mail: xcyuan@szu.edu.cn
Copy Citation Text

Xianyou Wang, Yuquan Zhang, Yanmeng Dai, Changjun Min, Xiaocong Yuan. Enhancing plasmonic trapping with a perfect radially polarized beam[J]. Photonics Research, 2018, 6(9): 09000847.

References

[1] A. Ashkin. Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett., 1970, 24: 156-159.

[2] K. C. Neuman, S. M. Block. Optical trapping. Rev. Sci. Instrum., 2004, 75: 2787-2809.

[3] P. K. Jain, X. H. Huang, I. H. El-Sayed, M. A. El-Sayed. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res., 2008, 41: 1578-1586.

[4] K. Svoboda, S. M. Block. Optical trapping of metallic Rayleigh particles. Opt. Lett., 1994, 19: 930-932.

[5] P. M. Hansen, V. K. Bhatia, N. Harrit, L. Oddershede. Expanding the optical trapping range of gold nanoparticles. Nano Lett., 2005, 5: 1937-1942.

[6] R. Quidant, C. Girard. Surface-plasmon-based optical manipulation. Laser Photon. Rev., 2008, 2: 47-57.

[7] O. M. Marago, P. H. Jones, P. G. Gucciardi, G. Volpe, A. C. Ferrari. Optical trapping and manipulation of nanostructures. Nat. Nanotechnol., 2013, 8: 807-819.

[8] T. Shoji, Y. Tsuboi. Plasmonic optical tweezers toward molecular manipulation: tailoring plasmonic nanostructure, light source, and resonant trapping. J. Phys. Chem. Lett., 2014, 5: 2957-2967.

[9] C. J. Min, Z. Shen, J. F. Shen, Y. Q. Zhang, H. Fang, G. H. Yuan, L. P. Du, S. W. Zhu, T. Lei, X. C. Yuan. Focused plasmonic trapping of metallic particles. Nat. Commun., 2013, 4: 2891.

[10] Y. Q. Zhang, J. Wang, J. F. Shen, Z. S. Man, W. Shi, C. J. Min, G. H. Yuan, S. W. Zhu, H. P. Urbach, X. C. Yuan. Plasmonic hybridization induced trapping and manipulation of a single Au nanowire on a metallic surface. Nano Lett., 2014, 14: 6430-6436.

[11] P. P. Patra, R. Chikkaraddy, R. P. N. Tripathi, A. Dasgupta, G. V. P. Kumar. Plasmofluidic single-molecule surface-enhanced Raman scattering from dynamic assembly of plasmonic nanoparticles. Nat. Commun., 2014, 5: 4357.

[12] L. C. Zhang, X. J. Dou, C. J. Min, Y. Q. Zhang, L. P. Du, Z. W. Xie, J. F. Shen, Y. J. Zeng, X. C. Yuan. In-plane trapping and manipulation of ZnO nanowires by a hybrid plasmonic field. Nanoscale, 2016, 8: 9756-9763.

[13] L. H. Lin, J. L. Zhang, X. L. Peng, Z. L. Wu, A. C. H. Coughlan, Z. M. Mao, M. A. Bevan, Y. B. Zheng. Opto-thermophoretic assembly of colloidal matter. Sci. Adv., 2017, 3: e1700458.

[14] Z. Shen, Z. J. Hu, G. H. Yuan, C. J. Min, H. Fang, X. C. Yuan. Visualizing orbital angular momentum of plasmonic vortices. Opt. Lett., 2012, 37: 4627-4629.

[15] M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, N. R. Heckenberg. Optical angular-momentum transfer to trapped absorbing particles. Phys. Rev. A, 1996, 54: 1593-1596.

[16] Y. F. Yuan, Y. N. Lin, B. B. Gu, N. Panwar, S. C. Tjin, J. Song, J. L. Qu, K. T. Yong. Optical trapping-assisted SERS platform for chemical and biosensing applications: design perspectives. Coord. Chem. Rev., 2017, 339: 138-152.

[17] Y. Q. Zhang, J. F. Shen, Z. W. Xie, X. J. Dou, C. J. Min, T. Lei, J. Liu, S. W. Zhu, X. C. Yuan. Dynamic plasmonic nano-traps for single molecule surface-enhanced Raman scattering. Nanoscale, 2017, 9: 10694-10700.

[18] M. Dienerowitz, M. Mazilu, K. Dholakia. Optical manipulation of nanoparticles: a review. J. Nanophoton., 2008, 2: 021875.

[19] BhalothiaD.YangY. T., “Trapping of micro particles in nanoplasmonic optical lattice,” J. Visualized Exp.e56151 (2017).JVEOA41940-087X

[20] K. Wang, E. Schonbrun, P. Steinvurzel, K. B. Crozier. Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink. Nat. Commun., 2011, 2: 469.

[21] A. Yang, L. Du, X. Dou, F. Meng, C. Zhang, C. Min, J. Lin, X. Yuan. Sensitive gap-enhanced Raman spectroscopy with a perfect radially polarized beam. Plasmonics, 2017, 13: 991-996.

[22] Q. W. Zhan. Cylindrical vector beams: from mathematical concepts to applications. Adv. Opt. Photon., 2009, 1: 1-57.

[23] K. Kitamura, K. Sakai, S. Noda. Sub-wavelength focal spot with long depth of focus generated by radially polarized, narrow-width annular beam. Opt. Express, 2010, 18: 4518-4525.

[24] A. S. Ostrovsky, C. Rickenstorff-Parrao, V. Arrizon. Generation of the “perfect” optical vortex using a liquid-crystal spatial light modulator. Opt. Lett., 2013, 38: 534-536.

[25] P. Vaity, L. Rusch. Perfect vortex beam: Fourier transformation of a Bessel beam. Opt. Lett., 2015, 40: 597-600.

[26] M. Lei, Z. Li, S. H. Yan, B. L. Yao, D. Dan, Y. J. Qi, J. Qian, Y. L. Yang, P. Gao, T. Ye. Long-distance axial trapping with focused annular laser beams. PLoS ONE, 2013, 8: e57984.

[27] Y. C. Liu, Y. G. Ke, J. X. Zhou, Y. Y. Liu, H. L. Luo, S. C. Wen, D. Y. Fan. Generation of perfect vortex and vector beams based on Pancharatnam-Berry phase elements. Sci. Rep., 2017, 7: 44096.

[28] M. V. Jabir, N. A. Chaitanya, A. Aadhi, G. K. Samanta. Generation of ‘perfect’ vortex of variable size and its effect in angular spectrum of the down-converted photons. Sci. Rep., 2016, 6: 21877.

[29] L. P. Du, G. H. Yuan, D. Y. Tang, X. C. Yuan. Tightly focused radially polarized beam for propagating surface plasmon-assisted gap-mode Raman spectroscopy. Plasmonics, 2011, 6: 651-657.

[30] BornM.WolfE., Principles of Optics (Cambridge University, 1999).

[31] M. Sarshar, W. S. T. Wong, B. Anvari. Comparative study of methods to calibrate the stiffness of a single-beam gradient-force optical tweezers over various laser trapping powers. J. Biomed. Opt., 2014, 19: 115001.

[32] G. M. Gibson, J. Leach, S. Keen, A. J. Wright, M. J. Padgett. Measuring the accuracy of particle position and force in optical tweezers using high-speed video microscopy. Opt. Express, 2008, 16: 14561-14570.

[33] J. P. Staforelli, E. Vera, J. M. Brito, P. Solano, S. Torres, C. Saavedra. Superresolution imaging in optical tweezers using high-speed cameras. Opt. Express, 2010, 18: 3322-3331.

[34] A. van der Horst, N. R. Forde. Power spectral analysis for optical trap stiffness calibration from high-speed camera position detection with limited bandwidth. Opt. Express, 2010, 18: 7670-7677.

[35] M. Druckmuller. Phase correlation method for the alignment of total solar eclipse images. Astrophys. J., 2009, 706: 1605-1608.

[36] K. Berg-Sorensen, H. Flyvbjerg. Power spectrum analysis for optical tweezers. Rev. Sci. Instrum., 2004, 75: 594-612.

Xianyou Wang, Yuquan Zhang, Yanmeng Dai, Changjun Min, Xiaocong Yuan. Enhancing plasmonic trapping with a perfect radially polarized beam[J]. Photonics Research, 2018, 6(9): 09000847.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!