光学学报, 2016, 36 (9): 0906004, 网络出版: 2016-09-09   

损耗型矢量布里渊光时域分析光纤传感技术

Optical Fiber Sensing Technology Based on Loss Vector Brillouin Optical Time Domain Analysis
作者单位
华北电力大学电子与通信工程系, 河北 保定 071003
摘要
提出了一种损耗型矢量布里渊光时域分析光纤传感技术,通过构建基于外差检测的模拟实验系统测量受激布里渊散射幅度损耗谱和相移谱,实现了50 m传感光纤的温度测量。结果表明,通过测量相移谱获得的布里渊频移与通过测量幅度损耗谱获得的布里渊频移基本一致,且均与温度呈良好的线性关系;由损耗型矢量布里渊光时域分析技术获得的布里渊频移的温度系数为1.16 MHz/℃,与传统布里渊光时域分析技术获得的1.2 MHz/℃具有良好的一致性。根据理论和实验结果,分析了损耗型矢量布里渊光时域分析光纤传感技术的优势。
Abstract
An optical fiber sensing technology based on loss vector Brillouin optical time domain analysis (VBOTDA) is proposed. By constructing a heterodyne detection based simulation experiment system, the amplitude loss spectrum and phase shift spectrum of stimulated Brillouin scattering (SBS) are measured, and the temperature measurement of 50 m long sensing fiber is realized. The results show that the Brillouin frequency shifts obtained by SBS phase shift spectrum measurement agree basically with that obtained by amplitude loss spectrum measurement, and that both show a good linear relationship with the temperature. The temperature coefficient of Brillouin frequency shift obtained by loss VBOTDA is 1.16 MHz/℃, which is well consistent with the result of 1.2 MHz/℃ obtained by conventional BOTDA system. According to the theoretical and experimental results, the advantages of the proposed technology are analyzed.
参考文献

[1] 毕卫红, 杨希鹏, 李敬阳, 等. 布里渊光时域反射系统中布里渊散射信号的前向和后向拉曼放大研究[J]. 中国激光, 2014, 41(12): 1205007.

    Bi Weihong, Yang Xipeng, Li Jingyang, et al. Forward and backward Raman amplification of Brillouin scattering signal in Brillouin optical time domain reflectometer system[J]. Chinese J Lasers, 2014, 41(12): 1205007.

[2] 刘文哲, 张燕君, 付兴虎, 等. 基于G-Simplex编码的BOTDR信号处理模型研究[J]. 激光与光电子学进展, 2015, 52(9): 090601.

    Liu Wenzhe, Zhang Yanjun, Fu Xinghu, et al. A model research of BOTDR signal processing based on G-Simplex coding[J]. Laser & Optoelectronics Progress, 2015, 52(9): 090601.

[3] 王雪, 路元刚, 张旭苹, 等. 多模声波导结构光纤的应变与温度系数计算方法[J]. 光学学报, 2015, 35(6): 0606003.

    Wang Xue, Lu Yuangang, Zhang Xuping, et al. Calculation method of strain and temperature coefficients for fibers with multimode acoustic waveguide structure[J]. Acta Optica Sinica, 2015, 35(6): 0606003.

[4] 李永倩, 李晓娟, 安琪. 提高布里渊光时域反射系统传感性能的方法[J]. 光学学报, 2015, 35(1): 0106003.

    Li Yongqian, Li Xiaojuan, An Qi. New method to improve the performance of Brillouin optical time domain reflectometer system[J]. Acta Optica Sinica, 2015, 35(1): 0106003.

[5] 李永倩, 赵旭, 赵丽娟, 等. 多模光纤不同模式布里渊散射参数[J]. 光子学报, 2015, 44(3): 0319002.

    Li Yongqian, Zhao Xu, Zhao Lijuan, et al. Brillouin scattering parameters of different modes in multimode optical fibers[J]. Acta Photonica Sinica, 2015, 44(3): 0319002.

[6] Angulo-Vinuesa X, Martin-Lopez S, Corredera P, et al. Raman-assisted Brillouin optical time-domain analysis with sub-meter resolution over 100 km[J]. Opt Express, 2012, 20(11): 12147-12154.

[7] Soto M A, Taki M, Bolognini G, et al. Simplex-coded BOTDA sensor over 120-km SMF with 1-m spatial resolution assisted by optimized bidirectional Raman amplification[J]. IEEE Photon Technol Lett, 2012, 24(20): 1823-1826.

[8] Robert W B. Nonlinear optics[M]. New York: Academic Press, 2007: 436-453.

[9] Govind P A. Nonlinear fiber optics[M]. New York: Academic Press, 2001: 359-364.

[10] Dossou M, Bacquet D, Szriftgiser P. Vector Brillouin optical time-domain analyzer for high-order acoustic modes[J]. Opt Lett, 2010, 35(22): 3850-3852.

[11] Zornoza A, Sagues M, Loayssa A. Self-heterodyne detection for SNR improvement and distributed phase-shift measurements in BOTDA[J]. J Lightwave Technol, 2012, 30(8): 1066-1072.

[12] Tu X B, Sun Q, Chen W, et al. Vector Brillouin optical time-domain analysis with heterodyne detection and IQ demodulation algorithm[J]. IEEE Photonics J, 2014, 6(2): 6800908.

[13] Naruse H, Tateda M, Ohno H, et al. Dependence of the Brillouin gain spectrum on linear strain distribution for optical time-domain reflectometer-type strain sensors[J]. Appl Opt, 2002, 41(34): 7212-7217.

[14] Kurashima T, Horiguchi T, Ohno H, et al. Strain and temperature characteristics of Brillouin spectra in optical fibers for distributed sensing techniques[C]. 24th European Conference on Optical Communication, 1998, 1: 149-150.

[15] 宋牟平. 微波电光调制的布里渊散射分布式光纤传感技术[J]. 光学学报, 2004, 24(8): 1111-1114.

    Song Muping. The technique of Brillouin scattering distributed optical fiber sensing based on microwave electrooptical modulation[J]. Acta Optica Sinica, 2004, 24(8): 1111-1114.

[16] Nikles M, Thevenaz L, Robert P A. Brillouin gain spectrum characterization in single-mode optical fibers[J]. J Lightwave Technol, 1997, 15(10): 1842-1851.

李永倩, 安琪, 李晓娟, 何玉钧, 张立欣. 损耗型矢量布里渊光时域分析光纤传感技术[J]. 光学学报, 2016, 36(9): 0906004. Li Yongqian, An Qi, Li Xiaojuan, He Yujun, Zhang Lixin. Optical Fiber Sensing Technology Based on Loss Vector Brillouin Optical Time Domain Analysis[J]. Acta Optica Sinica, 2016, 36(9): 0906004.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!