光子学报, 2018, 47 (11): 1128001, 网络出版: 2018-12-17  

高灵敏磁分离荧光传感法检测黄曲酶毒素B1

Magnetic Separation Fluorescent Sensor for Highly Sensitive Detection of Aflatoxin B1
作者单位
1 湖南科技大学 化学化工学院, 理论有机和功能分子教育部重点实验室, 精细聚合物可控制备与功能应用湖南省重点实验室, 湖南 湘潭 411201
2 湖南科技大学 材料科学与工程学院, 湖南 湘潭 411201
摘要
以自组装方式制备了Au@Fe3O4/核酸适体/氨基-碳量子点磁性生物纳米复合物, 并提出一种磁分离荧光传感法用于黄曲霉毒素B1的检测.当样品中有黄曲霉毒素B1时, 磁性生物纳米复合物中核酸适体选择性地与黄曲霉毒素B1结合并释放出氨基-碳量子点, 经磁性分离后, 氨基-碳量子点留在溶液中, 体系溶液荧光强度随黄曲霉毒素B1浓度的增大而增强.黄曲霉毒素B1浓度在0.001~1.0 ng/mL范围与溶液荧光强度成良好线性关系, 线性相关系数为0.996 4, 检测限为0.3 pg/mL.该方法利用磁性分离技术, 有效地消除了背景荧光影响, 改善了荧光传感性能.
Abstract
A fluorescent aptasensor was developed and applied to detect aflatoxin B1 based on Au@Fe3O4/aptamers/aminofunctioned carbon quantum dots magnetic nanocomposites which were constructed self-assembly. The selective interactions between aflatoxin B1 and the aptamer in the samples cause release of the aminofunctioned carbon quantum dots which remains in the solution after magnetic separation. A linear fluorescence signal response to aflatoxin B1 concentration is obtained over a wide aflatoxin B1 concentration range of 0.001~1.00 ng/mL with a detection limit of 0.3 pg/mL, and the correlation coefficient is 0.996 4. The performances of the fluorescent sensor are significantly improved as the background fluorescence is effectively removed by magnetic separation.
参考文献

[1] SU A M, NHONG Q M, WANG Y L, et al. Preparation of carbon quantum dots from cigarette filters and its application for fluorescence detection of Sudan I[J]. Analytica Chimica Acta, 2018, 1023: 115-120.

[2] GORYACHEVA I YU, SAPELKIN A V, SUKHORUKOV G B. Carbon nanodots: Mechanisms of photoluminescence and principles of application[J]. Trends in Analytical Chemistry, 2017, 90: 27-37.

[3] ZHAO Z H, ZHANG J Q, WANG Y T, et al. Hydrothermal synthesis of fluorescent nitrogen- doped carbon quantum dots from ascorbic acid and valine for selective determination of picric acid in water samples[J]. Journal of Environmental Analytical Chemistry, 2016, 96, 1402-1413.

[4] LI Y, SHI F P, CAI N, et al. A biosensing platform for sensitive detection of concanavalin A based on fluorescence resonance energy transfer from CdTe quantum dots to graphene oxide[J]. New Journal of Chemistry, 2015, 39: 6092-6098.

[5] YUAN Y S, ZHAO X, QIAO M, et al. Determination of sunset yellow in soft drinks based on fluorescence quenching of carbon dots[J]. Spectro- imica Acta Part A: Molecular and Biomole- cular Spectroscopy, 2016,167: 106-110.

[6] SUN X C, LEI Y. Fluorescent carbon dots and their sensing applications[J]. Trends in Analytical Chemistry, 2017, 89: 163-180.

[7] HOLA K, MARKOVA Z, ZOPPELLARO G, et al. Tailored functionalization of iron oxide nanoparticles for MRI, drug delivery, magnetic separation and immobilization of biosubstances [J]. Biotechnology Advances, 2015, 33: 1162-1176.

[8] Rocha-Santos T A P. Sensors and biosensors based on magnetic nanoparticles[J]. Trends in Analytical Chemistry, 2014, 62: 28-36.

[9] HE J C, HUANG M Y, WANG D M, et al. Magnetic separation techniques in sample preparation for biological analysis: A review[J]. Journal of Pharmaceutical and Biomedical Analysis, 2014, 101: 84-101.

[10] LIU L, JIN H, SUN L, et al. Determination of aflatoxins in medicinal herbs by high performance liquid chromatography-tandem mass spectrometry[J]. Phytochemical Analysis, 2012,23(5): 469-476.

[11] WEN J, KONG W J, HU Y C, et al. Multi-mycotoxins analysis in ginger and related products by UHPLC-FLR detection and LC-MS /MS confirmation [J]. Food Control, 2014,43(8): 82-87.

[12] PAEK S H, LEE S H, CHO J H, et al. Development of rapid one-step immuno-chro-matographic assay[J]. Methods, 2000,22(1): 53-60.

[13] VAHID N, AMMAR C, ALI B, et al. Ultrasensitive aflatoxin B1 assay based on FRET from aptamer labelled fluorescent polymer dots to silver nanoparticles labeled with complementary DNA[J]. Microchimica Acta, 2017, 184: 4655-4662.

[14] WANG B, CHEN Y, WU Y, et al. Aptamer induced assembly of fluorescent nitrogen-doped carbon dots on gold nanoparticles for sensitive detection of AFB1[J]. Biosensors & Bioelectronics, 2016, 78, 23- 30.

[15] 姜利英, 周鹏磊, 肖小楠, 等. 基于氧化石墨烯荧光适体传感器的多巴胺检测[J].发光学报,2016,37(7): 881-886.

    JIANG Li-ying, ZHOU Peng-lei, XIAO Xiao-nan, et al. Fluorescent aptamer biosensor for the detection of dopamine with graphene oxide[J]. Chinese Journal of Luminescence, 2016, 37(7): 881-886.

[16] WANG B, CHEN Y F, WU Y Y, et al.Aptamer induced assembly of uorescent nitrogen-doped carbon dots on gold nanoparticles for sensitive detection of AFB1[J]. Biosensors & Bioelectronics, 2016, 78: 23-30.

[17] WANG B, ZHU Q K, LIAO D L,et al. Perylene probe induced gold nanoparticle aggregation[J]. Journal of Materials Chemistry, 2011, 21: 4821- 826.

[18] JIN R C, WU G S, LI Z, et al. What controls the melting properties of DNA-linked gold nanoparticle assemblies[J]. Journal of the American Chemical Society, 2003, 125: 1643-1654.

[19] WANG C, HU T T, WEN Z Q, et al. Concentration-dependent color tunability of nitrogen-doped carbon dots and their application for iron(III) detection and multicolor bioimaging[J]. Journal of Colloid and Interface Science, 2018, 521: 33-41.

[20] GRABOLLE M, SPIELES M, LESNYAK V, et al. Determination of the fluorescence quantum yield of quantum dots: suitable procedures and achievable uncertainties[J]. Analytical Chemistry, 2009, 81: 6285-6294.

[21] SAHA K, AGASTI S S, KIM C Y, et al. Gold nanoparticles in chemical and biological sensing[J]. Chemical Reviews, 2012,112: 2739-2779.

曾云龙, 张敏, 易守军, 何盼, 赵敏, 夏晓东, 唐春然. 高灵敏磁分离荧光传感法检测黄曲酶毒素B1[J]. 光子学报, 2018, 47(11): 1128001. ZENG Yun-long, ZHANG Min, YI Shou-jun, HE Pan, ZHAO Min, XIA Xiao-dong, TANG Chun-ran. Magnetic Separation Fluorescent Sensor for Highly Sensitive Detection of Aflatoxin B1[J]. ACTA PHOTONICA SINICA, 2018, 47(11): 1128001.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!