光学 精密工程, 2018, 26 (6): 1287, 网络出版: 2018-10-02  

分体式超大口径空间遥感器技术及其发展

Technology and development of deployable segmented ultra-large-aperture space remote sensors
作者单位
1 中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
2 中国科学院大学, 北京 100049
引用该论文

杨会生, 张学军, 李志来, 鲍赫, 樊延超. 分体式超大口径空间遥感器技术及其发展[J]. 光学 精密工程, 2018, 26(6): 1287.

YANG Hui-sheng, ZHANG Xue-jun, LI Zhi-lai, BAO He, FAN Yan-chao. Technology and development of deployable segmented ultra-large-aperture space remote sensors[J]. Optics and Precision Engineering, 2018, 26(6): 1287.

参考文献

[1] RIOUX N, THRONSON H, FEINBERG L, et al。. A future large-aperture UVOIR space observatory: reference designs [J]. SPIE, 2015, 9602: 960205-1

[2] REDDING D C, FEINBERG L, POSTMANC M, et al.. Beyond JWST: Performance requirements for a future large UVOIR space telescope [J]. SPIE, 2014, 9143: 914312-1.

[3] LILLIE C F. Large Deployable Telescopes for Future Space Observatories [J]. SPIE, 2005, 58990D-1.

[4] PHILIP STAHL H, THRONSON H, LANGHOFF S, et al.. Potential astrophysics science missions enabled by NASA's planned Ares V [J]. SPIE, 2009, 7436: 743607-1.

[5] 马志滨, 何麟书. 国外重型运载火箭发展趋势述评 [J]. 固体火箭技术, 2012, 35(1): 1-4.

    MA ZH B, HE L SH. Development trend review of 2624 Optics and Precision Engineering Vol. 24 foreign heavy-lift launch vehicle [J]. Journal of Solid Rocket Technology, 2012,35 (1): 1-4. (in Chinese)

[6] 张学军, 樊延超, 鲍赫, 等. 超大口径空间光学遥感器的应用和发展 [J]. 光学 精密工程, 2016, 24(11): 2613-2626.

    ZHANG X J, FAN Y CH, BAO H, et al.. Applications and development of ultra large aperture space optical remote sensors[J]. Opt. Precision Eng., 2016, 24(11):2613-2626. (in Chinese)

[7] 廖周. 大口径分块望远镜主镜误差分析与共相位探测方法研究[D]. 成都: 电子科技大学, 2015

    LIAO ZH. Error analysis of segmented primary mirror and research on co-phasing measurement [D]. Chengdu: University of Electronic Science and Technology of China, 2015.(in Chinese)

[8] 王金.反射镜共相位拼接检测与驱动控制技术研究[D]. 北京: 中国科学院, 2014.

    WANG J. Research on the Test Techniques and Drive Control of the Segmented Mirror [D]. Deijing: University of Chinese Academy of Sciences, 2014.(in Chinese)

[9] 姚劲刚. 合成孔径望远镜共相位拼接技术研究[D]. 北京: 中国科学院, 2017.

    YAO J G. The study of Co-phasing Alignment Technology For Segmented Telescope [D]. Deijing: University of Chinese Academy of Sciences,2017.(in Chinese)

[10] 曹睿, 赵智亮, 郑列华, 等. 合成口径子镜测试拼接技术[J]. 激光与光电子学进展, 2015, 52(1): 051201.

    CAO R, ZHAO ZH L, ZHENG L H, et al.. Subaperture Cophasing Technique of Segmented Mirror[J]. Laser & Optoelectronics Progress, 2015, 52(1): 051201. (in Chinese)

[11] 陈小伟. 空间光学遥感器大口径主镜展开技术研究[D]. 北京: 中国科学院, 2011.

    CHEN X W. Technology Studying on the Deployable Large-aperture Primary Mirror of Space Optical Remote Sensor[D]. Deijing: University of Chinese Academy of Sciences,2011.(in Chinese)

[12] PITTMAN R, LEIDICH C, MASCY F, et al.. A modular approach to developing a large deployable reflector [EB/OL]. http://spiedigitallibrary.org/ss/termsofuse.aspx, 1984.

[13] BRUCE PITTMAN R. The large deployable reflector - a technology development challenge [J]. SPIE, 1984, 493: 106-113.

[14] CUNNINGHAM C, CULLUM M, DETSIS E, et al.. TECHBREAK: a technology foresight activity for the European Space Agency points the way to future space telescopes [J]. SPIE, 2015, 9602: 960204-1-25.

[15] GREENHOUSE M A. The JWST Science Instrument Payload: Mission Context and Status [J]. SPIE, 2014, 9143: 914307.

[16] PHILIP STAHL H, ALONGI C, ARNESON A, et al. Survey of interferometric techniques used to test JWST optical components [J]. SPIE, 2010, 7790: 779002.

[17] NELLA J, ATCHESON P, ATKINSON C, et al.. James Webb Space Telescope (JWST) Observatory Architecture and Performance [J]. SPIE, 2004, 5487: 576-287.

[18] ><参考文献原文> WELLS C, WHITMAN T, HANNON J, et al.. Assembly integration and ambient testing of the James Webb Space Telescope primary mirror [J]. SPIE, 2004, 5487: 859-866.

    

    ATKINSON C, TEXTER S, HELLEKSON R, et al.. Status of the JWST Optical Telescope Element [J]. SPIE, 2006, 6265: 62650T.

[19] WELLS C, MALLETTE M, FISCHER D, et al.. Primary Mirror Segment Assembly integration and alignment for the James Webb Space Telescope [J]. SPIE, 2010, 7793: 779309.

[20] BAIOCCHI D, PHILIP STAHL H. Enabling future space telescopes: mirror technology review and development roadmap[R].Astro:the Astronomy & Astrophysics Decadal Survey,2009.

[21] HADAWAY J B, CHANEY D M, CAREY L B. The optical metrology system for cryogenic testing of the JWST primary mirror segments [J]. SPIE, 2011, 8126: 81260P.

[22] KENDRICK S E, BROWN R J, STREETMAN S, et al.. Lightweighted Beryllium Cryogenic Mirrors for Both Monolithic and Segmented Space Telescopes [J]. SPIE, 2003, 4850: 241-253.

[23] REED T, KENDRICK S E, BROWNA R J, et al.. Final results of the Subscale Beryllium Mirror Demonstrator (SBMD) program [J]. SPIE, 2001, 4451: 5-14.

[24] HADAWAY J B, GEARY J, REARDON P, et al.. Cryogenic optical testing results for the Subscale Beryllium Mirror Demonstrator (SBMD) [J]. SPIE, 2001, 4451: 15-26.

[25] KENDRICK S E, CHANEY D, BROWN R J, et al.. Optical characterization of the beryllium semi-rigid AMSD mirror assembly [J]. SPIE, 2003, 5180: 180-187.

[26] CHANEY D M, BROWN R J, KENDRICK S E, et al.. Results of the beryllium AMSD mirror cryogenic optical testing [J]. SPIE, 2004, 5487: 833-841.

[27] KENDRICK S E, REED T, STREETMAN S. In-process status of the 1.4-rn beryllium semi-rigid Advanced Mirror System Demonstrator (AMSD) [J]. SPIE, 2001, 4451: 58-66.

[28] KENDRICK S E, REED T, STREETMAN S, et al.. Design and test of semi-rigid beryllium mirrors for lightweighted space applications; SBMD cryogenic performance update and AMSD design approach [J]. SPIE, 2001, 4198: 221-229.

[29] STREETMAN S, KINGSBURY L. Cryogenic Nano-positioner Development and Test for Space Applications [J]. SPIE, 2003, 4850: 274-285.

[30] CHANEY D M, HADAWAY J B, LEWIS J. Cryogenic radius of curvature matching for the JWST primary mirror segments [J]. SPIE, 2009, 7439: 743916.

[31] PHILIP STAHL H. JWST mirror technology development results [J]. SPIE, 2007, 6671: 667102.

[32] FEINBERG L D, DEAN B, HYDE T, et al.. Large segmented UV-Optical space telescope using a Hybrid Sensor Active Control (HSAC) architecture [J]. SPIE, 2009, 7436: 743608-1.

[33] POSTMAN M, BROWN T, SEMBACH K, et al.. Advanced Technology Large-Aperture Space Telescope: science drivers and technology developments [J]. Optical Engineering, 2012, 51(1): 011007 -1-11.

[34] PHILIP STAHL H, POSTMAN M, SCOTT SM-ITH W. Engineering specification for large-aperture UVO space telescopes derived from Science requirements [J]. SPIE, 2013, 8860: 886006-1-13.

[35] BOLCAR M R, BAL-ASUBRAMANIAN K, CLAMPIN M, et al.. Technology development for the Advanced Technology Large Aperture Space Telescope (ATLAST) as a Candidate Large UVOptical-Infrared (LUVOIR) Surveyor [J]. SPIE, 9602: 960209-1-14.

[36] OEGERLE W R, FEINBERG L D, PURVES L R, et al.. ATLAST-9.2m: a large-aperture deployable space telescope [J]. SPIE, 2010, 7731: 77312M.

[37] POSTMAN M. Advanced Technology Large-Aperture Space Telescope (ATLAST): a technology roadmap for the next decade [EB/OL]. http://arxiv.org/abs/0904.0941, 2009.

[38] MARTIN F, LESYNA L, LEROY B, et al.. Lockheed Martin Team's Next Generation Space Telescope (NGST) reference architecture [J]. SPIE, 2000, 4013: 17-26.

[39] AMATO M J, BENFORD D J, HARVEY MOSELEY S, et al.. An engineering concept and enabling technologies for a large Single Aperture Far-Infrared Observatory (SAFIR) [J]. SPIE, 2003, 4850: 960205-1.

[40] LILLIE C F, DAILEY D R. A mission architecture for future space observatories optimized for SAFIR [J]. SPIE, 2005, 5899: 58990Q-1-7.

[41] REY J J, WIRTH A, JANKEVICS A, et al.. A deployable, annular, 30m telescope, space-based observatory [J]. SPIE, 2014, 9143: 914318.

[42] OEGERLE W R, PURVES L R, BUDINOFF R V, et al.. Concept for a Large Scalable Space Telescope: In-space assembly [J]. SPIE, 2006, 6265:62652C.

杨会生, 张学军, 李志来, 鲍赫, 樊延超. 分体式超大口径空间遥感器技术及其发展[J]. 光学 精密工程, 2018, 26(6): 1287. YANG Hui-sheng, ZHANG Xue-jun, LI Zhi-lai, BAO He, FAN Yan-chao. Technology and development of deployable segmented ultra-large-aperture space remote sensors[J]. Optics and Precision Engineering, 2018, 26(6): 1287.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!